
Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat.         (2023) 117:113 
https://doi.org/10.1007/s13398-023-01418-6

ORIG INAL PAPER

Tameness and Rosenthal type locally convex spaces

Matan Komisarchik1 ·Michael Megrelishvili1

Received: 16 April 2022 / Accepted: 15 March 2023
© The Author(s) under exclusive licence to The Royal Academy of Sciences, Madrid 2023

Abstract
Motivated by Rosenthal’s famous l1-dichotomy in Banach spaces, Haydon’s theorem, and
additionally by recent works on tame dynamical systems, we introduce the class of tame
locally convex spaces. This is a natural locally convex analogue of Rosenthal Banach spaces
(for which any bounded sequence contains a weak Cauchy subsequence). Our approach is
based on a bornology of tame subsetswhich in turn is closely related to eventual fragmentabil-
ity. This leads, among others, to the following results:

• extending Haydon’s characterization of Rosenthal Banach spaces, by showing that a lcs
E is tame iff every weak-star compact, equicontinuous convex subset of E∗ is the strong
closed convex hull of its extreme points iff cow∗(K ) = co (K ) for every weak-star
compact equicontinuous subset K of E∗;

• E is tame iff there is no bounded sequence equivalent to the generalized l1-sequence;
• strengthening some results of W.M. Ruess about Rosenthal’s dichotomy;
• applying the Davis–Figiel–Johnson–Pelczyński (DFJP) technique one may show that

every tame operator T : E → F between a lcs E and a Banach space F can be factored
through a tame (i.e., Rosenthal) Banach space.

Keywords Asplund space · Bornologies · Double limit property · Haydon theorem ·
Reflexive space · Rosenthal dichotomy · Rosenthal space · Tame locally convex · Tame
system
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1 Introduction

In the present work, we introduce and study a locally convex analogue of Rosenthal Banach
spaces. As in [15, 16, 18], we say that a Banach space V isRosenthal if any bounded sequence
contains a weak Cauchy subsequence, or equivalently, if V does not contain an isomorphic
copy of l1. Such Banach spaces appear in many publications (especially, after Rosenthal’s
classical work [48]), usually without any special name.

In order to better understand our approach and related classes, we present our definition
in the framework of the smallness hieararchy for bounded subsets in lcs. In this way, we also
provide natural locally convex analogues of Asplund and reflexive Banach spaces.

Smallness hierarchy of bounded subsets. The relationship between a space E and its
topological dual E∗, via various classical bornologies on E , is one of the central themes in
the theory of locally convex spaces. For every bounded subset B of E and an equicontinuous
weak-star compact subset K of E∗ (notation: K ∈ eqc (E∗)), we can think of B as a bounded
family of real-valued functions over K (via the canonical bilinear map E × E∗ → R). This
“tango" between B and K is a source of many interesting properties of the entire space.
Namely, we want to study whether the family B̃ := {b̃ : K → R}b∈B is small (in some
sense), and then study the locally convex spaces whose all bounded subsets are small in the
same way.

This is related to the general topological question: what might be a hierarchy of smallness
for a bounded family B ⊂ R

K of real functions on an abstract compact space K ? We present
a framework for this kind of comparisons using the concept of bornological classes (Sect. 3).

We suggest three cases which seem to be very natural. They are very important in the
theory of dynamical systems and their representations on widely known classes of Banach
spaces. See Sect. 11 and joint works of the second author with Eli Glasner [15, 18]. Consider
the following three conditions on B:

(1) B is tame on K (does not contain any sequence which is combinatorially independent in
the sense of Rosenthal, Definition 2.21);

(2) B is a fragmented family (Definition 2.12) of functions on K ;
(3) B has the Grothendieck’s double limit property (DLP) on K (Definition 2.28).

Remark 1.1 These three conditions do not seem immediately comparable. However,
(3) ⇒ (2) ⇒ (1). As it follows from results of [17, 39], every tame (fragmented, DLP)
bounded family B of continuous functions on a compact space X can be represented on a
Rosenthal (Asplund, reflexive) Banach space.

These results are based on the Davis–Figiel–Johnson–Pelczyński factorization technique
[6]. See also Lemma 9.7 and Theorem 9.8.

The tameness can be expressed also in terms of eventual fragmentability (Definition 2.12
and Lemma 2.24). This gives an alternative explanation of (2)⇒ (1). As to (3)⇒ (2), note
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that B has DLP on K iff the natural image of B into the Banach space C(K ) is relatively
weakly compact.

Recall that a representation of a bounded map B × K → R on a Banach space V is a
pair (ν, α) of bounded maps ν : B → V , α : K → V ∗, where α is weak-star continuous and
f (x) = 〈ν( f ), α(x)〉 for all f ∈ B, x ∈ K .

B × K

ν

��
α

��

�� R

id
��

V × V ∗ �� R

For the converse direction (justifying these representations above), note that a Banach space
V is:

(1) Rosenthal (not containing a copy of l1) iff the closed unit ball BV of V is a tame family
of functions on the weak-star compact unit ball BV ∗ of V ∗;

(2) Asplund iff BV is a a fragmented family of functions on BV ∗ ;
(3) reflexive iff BV has DLP on BV ∗ .

These three characterizations and Remark 1.1 suggest corresponding locally convex ana-
logues via three bornologies of tame, Asplund and DLP subsets, as defined below.

Definition 1.2 Let E be a lcs.

(1) We say that a bounded subset B ⊂ E is:

(a) tame if B is a tame family on every weak-star compact equicontinuous subset
K ∈ eqc (E∗);

(b) Asplund if B is a fragmented family on every K ∈ eqc (E∗);
(c) DLP if B is DLP on every K ∈ eqc (E∗).

(2) We say that a lcs E is:

(a) tame (E ∈ (T)) if every bounded subset in E is tame, Definition 5.3;
(b) Namioka-Phelps (E ∈ (NP)) if every bounded subset in E is Asplund, Definition

4.10;
(c) DLP (E ∈ (DLP)) if every bounded subset in E is DLP, Definition 4.2.

Asplund subsets play a major role in Banach space theory (sometimes under different
names); see [5, 9]. The class (NP) was first defined in [33] using a different but equivalent
approach.

Properties and examples. The class (T) is quite large. First of all, note that

(DLP) ⊂ (NP) ⊂ (T).

This can be derived fromRemark 1.1. Using results of Diestel–Morris–Saxon [7], we show in
Proposition 5.7 that (T) is properly larger than the variety generated by all Banach Rosenthal
spaces. Furthermore, (T) has nice stability properties (Theorem 5.5). Among other results,
we show that (T) is closed under: subspaces, arbitrary products, locally convex direct sums
and bound covering continuous linear images.

These properties are verified using the concept of fragmentability (which originally comes
from Namioka–Phelps [41], Jayne–Rogers [27]) and its natural generalization for families
(borrowed from recent study of tame dynamical systems).
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Fragmented families (Definition 2.12) are closely related to tameness, providing an important
sufficient condition. Beyond representation theory (Remark 1.1), a more direct reason is that
B is tame on K iff B is eventually fragmented in the sense of [15] (i.e., every sequence in
B contains a subsequence which is fragmented on K ). We apply here some useful results of
Rosenthal [48] and Talagrand [53], synthesized in Lemma 2.24.

One of the challenges is to find when standard constructions lead to NP or tame lcs. For
lcs of the typeCk(X)we have a concrete (and somewhat expected) criterion, Proposition 5.9,
which (up to some reformulations) is quite close to a known result by Gabriyelyan–Kakol–
Kubiś–Marciszewski [12, Lemma 6.3].

Free locally convex spaces. Another important construction producing lcs is the classical
free locally convex space L(X), defined for every Tychonoff space X .

For every compact space K , its free lcs L(K ) is multi-reflexive (i.e., embedded into a
product of reflexive Banach spaces), as it was proved in a very recent paper by Leiderman
and Uspenskij [32]. Since multi-reflexive lcs (by Theorem 4.6) is (DLP), we obtain that
L(K ) is (DLP).

More generally, in Theorem 8.4 we show that L(X) is (DLP) (hence, (NP) and (T)) for
every Tychonoff space X . In particular, we get that L(NN) is (DLP) for the Polish space N

N

of all irrationals. In contrast, another result from [32] shows that L(NN) is not multi-reflexive.
Moreover, while every semi-reflexive lcs is (DLP), the spaces L(X), which are (DLP), are
very rarely semi-reflexive (Theorem 8.8).

Rosenthal type properties. Recall that a sequence {xn}n∈N in a lcs E is weak Cauchy if
the scalar sequence u(xn) is convergent for every u ∈ E∗. Rosenthal’s celebrated dichotomy
theorem (see [48]) asserts that every bounded sequence in a Banach space either has a
weak Cauchy subsequence or a subsequence equivalent to the unit vector basis of l1 (an
l1-sequence).

Definition 1.3 We say (as in [15, 16, 18]) that a Banach space V isRosenthal if every bounded
sequence in A has a weak Cauchy subsequence.

Definition 1.4 Let E be a lcs. Define the following properties of E :

(Ros) Every bounded sequence in E has a subsequence which is weak Cauchy.
(R1) There is no bounded sequence in E which is equivalent to the l1-basis (in the sense

of Definition 6.1).
(R1) The Banach space l1 cannot be embedded into E .

All these three properties are equivalent in Banach spaces by Rosenthal’s classical results,
[48].

Note that [13] uses some similar notation ((R1) and (R2)) to represent similar concepts
((Ros) and (R1), respectively). Some authors (e.g., [13] and [11]) say that a lcs E has the
Rosenthal property if it satisfies the Rosenthal dichotomy (every bounded sequence has a
subsequence that is either weak Cauchy or equivalent to the l1-basis). In this paper, we always
refer to Definition 1.4.

In Sect. 7 we prove the following theorems:

Theorem 1.5 (7.5) For any lcs we have (Ros) 	⇒ (T) = (R1) 	⇒ (R1).

Note that (Ros) 
= (T) (Theorem 1.9) and (R1) 
= (R1) (Example 6.4). For every locally
complete lcs we have (R1) = (R1) (Lemma 6.7).
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Theorem 1.6 (7.2) [Tame dichotomy in lcs] Let E be a locally convex space. Then every
bounded subset in E is either tame, or has a subsequence equivalent to the l1-sequence.

Theorem 1.7 (7.7) If all bounded sets of a lcs E are metrizable, then (Ros) = (T) = (R1),

and the following generalized Rosenthal’s dichotomy holds: any bounded sequence in E
either has a weak Cauchy subsequence or an l1-subsequence.

The latter result gives, as a corollary, a well-known result of Ruess which extends Rosen-
thal’s non-containtment of l1-criteria to a quite large class of lcs.

Fact 1.8 (Ruess [49, Thm 2.1 and Prop. 3.3]) Let E be a locally complete lcs with metrizable
bounded sets. Then (Ros) = (R1) and the following dichotomy holds: any bounded sequence
in X either has a weak Cauchy subsequence or a subsequence which spans an isomorphic
copy of l1.

The following result shows the limitations in general lcs for the existence of a Rosenthal
type dichotomy.

Theorem 1.9 (7.8) There exists a tame, complete (even reflexive) lcs which:

(i) is not a Rosenthal lcs;
(ii) does not contain any l1-subsequence;
(iii) contains a dense, Rosenthal subspace.

As a corollary: Rosenthal’s dichotomy does not hold for such locally convex spaces.

This also shows that (Ros) is not closed under the completion. The same is unclear for
(T).

For every lcs E , there exists the strongest topology between all locally convex tame
topologies which are weaker than the original topology. This is proved in Theorem 7.13
using the bipolar theorem. In fact, it is proven for every polarly compatible bornological
class (Definition 3.21).

In Theorem 9.8 we apply the DFJP technique [6] and show that every tame (NP, DLP)
operator T : E → F between a lcs E and a Banach space F can be factored through a tame
(Asplund, reflexive) Banach space.

Haydon’s theorem for tame locally convex spaces. Recall that, according to Mazur’s the-
orem, weak and norm closures are the same for convex subsets in Banach (or, even in locally
convex) spaces. This property for weak-star closure in the dual is not true in general. Hay-
don’s theoremcomes as an important compromise. It generalizes an earlier result for separable
Banach spaces which was proved by Odell and Rosenthal in [43].

In Sect. 10, we prove a generalized version of Haydon’s theorem for locally convex spaces.

Theorem 1.10 (10.12) For a locally convex space E, the following are equivalent:

(1) E is tame.
(2) Every weak-star compact, equicontinuous convex subset of E∗ is the strong closed convex

hull of its extreme points.
(3) For every weak-star compact, equicontinuous subset K of E∗ we have:

cow∗(K ) = co (K ).

Open questions. See 5.6, 7.14, 8.7.
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2 Definitions: fragmentability, independence and tameness

Topological concepts. All topological spaces below are assumed to be completely regular
and Hausdorff (that is, Tychonoff). Recall that a function f : X → Y between topological
spaces is said to be a Baire class 1 function [28] if the inverse image of every open set is Fσ .
f has the point of continuity property (in short: PCP) if for every closed nonempty A ⊂ X
the restriction f|A : A→ Y has a continuity point.

Locally convex spaces. We include the following standard definitions. In this work E will
usually denote a real locally convex space. A subset B ⊂ E is said to be bounded if for
every neighborhood O of the zero in E there exists c ∈ R such that B ⊂ cO . For every
linear continuous operator u : E1 → E2 and every bounded subset B ⊂ E1 its image u(B)

is also bounded in E2. Also, B is bounded if and only if it is weakly bounded (see, [25, Thm.
8.3.4]). The boundedness is countably determined. That is, B is bounded iff all its countable
subsets are bounded.

Definition 2.1

(1) A subset S ⊂ E is said to be

(a) convex if when x, y ∈ S and 0 ≤ α ≤ 1 then αx + (1 − α)y ∈ S. The convex hull
co S of S is defined as the smallest convex set containing S. Explicitly:

co (S) :=
{

N∑
n=1

αnxn | ∀1 ≤ n ≤ N : xn ∈ S, αn ∈ [0, 1],
N∑

n=1
αn = 1

}
.

(b) balanced if αS ⊆ S for every α ∈ R satisfying |α| ≤ 1. The balanced hull bal Sof
A is defined as the smallest balanced set containing A. Explicitly:

bal S := {αx | x ∈ S, α ∈ [−1, 1]}.
(c) a disk (or absolutely convex) if it is both balanced and convex. The absolutely convex

hull acx S of S is defined as the smallest disked set containing S. Explicitly:

acx S = co (bal S).

(2) A barrel is a closed disk S which is absorbing, meaning that E = ⋃
n∈N nS.

(3) The gauge qS : E → R of S is defined as: qS(x) := inf{r > 0 | x ∈ r S}.
(4) E is said to be locally complete if for every closed bounded disk S ⊆ E , the linear span

Span(S) ⊆ E of S is complete with respect to qS .
(5) As in [25], we denote the polar of a subset S of a locally convex space E as:

S◦ := {ϕ ∈ E∗ | ∀x ∈ S : |ϕ(x)| ≤ 1}.
Similarly, for every S ⊂ E∗ its polar is:

S◦ := {x ∈ E | ∀ϕ ∈ S : |ϕ(x)| ≤ 1}.
Now, for every S ⊂ E its bipolar S◦◦ is defined as (S◦)◦.

(6) A subset M ⊆ E∗ is said to be equicontinuous, if there exists some neighborhood
0 ∈ U ⊆ E such that M ⊆ U ◦.

Fact 2.2 (Bipolar Theorem) [25, p. 149] For every S ⊆ E the bipolar S◦◦ ⊂ E is equal to
the weak closed absolutely convex hull acx wS.
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Fact 2.3 (Mazur’s Theorem [52, p. 65, Cor. 2]) For every convex subset of a lcs E, its closure
is identical with its weak closure. Hence, co(S) = co(S)

w
for every S ⊂ E.

Denote by eqc (E∗) the system of all equicontinuous weak-star compact subsets in E∗
(equicontinuous compactology in terms of [25]). It is a basis of the system of all equicontin-
uous subsets in E∗ as it follows from Alaouglu–Bourbaki’s theorem.

Fact 2.4 (Alaouglu–Bourbaki) For every equicontinuous subset A ⊂ E∗, its weak-star
closure is equicontinuous and weak-star compact.

Let f : E1 → E2 be a continuous linear operator between lcs. Write

f ∗ : E2 → E1, 〈v, f ∗(ϕ)〉 = 〈 f (v), ϕ〉
for its adjoint, where

E × E∗ → R, (u, ϕ) �→ 〈v, ϕ〉 = ϕ(v)

is the canonical bilinear form.

Definition 2.5 Recall that the strong topology on the dual E∗ of a lcs E is the topology of
bounded convergence. The standard uniformity of E∗ has the uniform basis {U [B, ε]}, where
ε > 0 and B runs over all bounded subsets of E . Here

U [B, ε] := {(ϕ1, ϕ2) ∈ E∗ × E∗ : |ϕ1(b)− ϕ2(b)| < ε ∀b ∈ B},
Fact 2.6 [42, Thm. 8.11.3] Suppose that T : E → F is a linear continuous operator between
lcs. Then it is also weakly continuous. Moreover, T ∗ is both weak-star and strongly contin-
uous.

A (dense) subspace F of a lcs E is said to be large in E (see [45, p. 254]) if every bounded
set in E is contained in the closure of a bounded set in F . Every dense subspace in a normed
space V is large. Also, the same is true for every separable metrizable lcs V .

Lemma 2.7 Let F be a large dense subspace of E and i : F ↪→ E be the inclusion map.
Then i∗ : E∗ → F∗ is a topological isomorphism with respect to the strong topology.

Proof It is easy to see that i∗ is a bijection since F is dense in E . Applying Fact 2.6, all that
is left is to show that i∗ is strongly open. For every bounded subset B ⊆ E and ε > 0 define:

WE (B, ε) := {ϕ ∈ E∗ | ∀x ∈ B : |ϕ(x)| < ε}.
We define WF (B, ε) analogously. We will show that i∗(WE (B, ε)) is always an open neigh-
borhood of zero in F∗. By definition, for every bounded B ⊆ E there exists a bounded
B ′ ⊆ F such that B ⊆ B ′. It is easy to see that:

WF

(
B ′, 1

2
ε

)
⊆ i∗ (WE (B, ε)) .

��
Lemma 2.8 Let F ⊆ E be a subspace and i : F ↪→ E is the inclusion map. If
M ⊆ F∗ is a weak-star compact equicontinuous subset, then there exists a weak-star com-
pact, equicontinuous subset N ⊆ E∗ such that M = i∗(N ).

123



  113 Page 8 of 53 M. Komisarchik, M. Megrelishvili

Proof A consequence of [25, Cor. 8.7.2] and the Alaouglu–Bourbaki’s Theorem (Fact 2.4).
��

It is well-known that if B is a bounded disk, then its gauge qB is a norm.

Fact 2.9 [45, Proposition 3.2.2] Let B ⊆ E be a bounded disc in E. Then (EB , qB) is a
normed space and its topology is finer than that induced by E.

The following is a consequence of Fact 2.9 and [25, p. 105 Prop. 1].

Lemma 2.10 Let E be a locally convex space. If A ⊆ E is bounded, closed and absolutely
convex, then A = BEA (the unit ball of the semi-normed space (EA, qA)).

Fragmentability. The following definition is a generalized version of the fragmentability
concept.

Definition 2.11 [26, 33] Let (X , τ ) be a topological space and (Y , μ) a uniform space. X
is (τ, μ)-fragmented by a (not necessarily continuous) function f : X → Y if for every
nonempty subset A of X and every ε ∈ μ there exists an open subset O of X such that O ∩ A
is nonempty and the set f (O ∩ A) is ε-small in Y . We also say in that case that the function
f is fragmented and write f ∈ F(X , Y ), whenever the uniformityμ is understood. If Y = R

with its natural uniformity, then we write simply F(X).

When Y = X , f = id X and μ is a metric uniformity, we retrieve the usual definition
of fragmentability (more precisely, (τ, μ)-fragmentability) in the sense of Jayne and Rogers
[27]. Implicitly, it already appears in a paper of Namioka and Phelps [41].

If f : (X , τ ) → (Y , μ) has PCP then it is fragmented. If (X , τ ) is hereditarily Baire (e.g.,
compact, or Polish) and (Y , μ) is a pseudometrizable uniform space, then f is fragmented iff
f has PCP. If X is Polish and Y is a separable metric space, then f : X → Y is fragmented
iff f is a Baire class 1 function. See [14, 15].

Definition 2.12

(1) [14] We say that a family of functions F = { f : (X , τ ) → (Y , μ)} is fragmented if the
condition of Definition 2.11.1 holds simultaneously for all f ∈ F . That is, f (O ∩ A) is
ε-small for every f ∈ F .

(2) [15] F is an eventually fragmented family if every sequence in F has a subsequence
which is a fragmented family on X .

Definition 2.12.1 was introduced in arxiv preprints of [14] and also independently (under
the name: equi-fragmented) in the Ph.D. Thesis of M.M. Guillermo [22].

Lemma 2.13 Let F = { f : (X , τ ) → (Y , μ)}bea family of functions. Then F is a fragmented
family iff the mapping πF : X → Y F , πF (x)( f ) = f (x) is (τ, μU )-fragmented, where μU

is the uniform structure of uniform convergence on the set Y F of all mappings from F into
(Y , μ).

Proof Straighforward. ��
Lemma 2.14 Let α : X → X ′ be a continuous map between compact spaces, (Y , μ) be a
uniform space and F ⊆ Y X ′ bea family of functions. If F is fragmented, then so is F◦α ⊆ Y X .
If α is surjective, then the converse is also true.
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Proof Combination of Lemma 2.13 and [15, Lemma 2.3.5]. ��
Lemma 2.15

(1) Let F be a fragmented family of real-valued functions on a topological space X. Then
acx (F) is also fragmented.

(2) [15, Prop. 4.15] Let F be an eventually fragmented family of real-valued functions on a
compact space X. Then co(F) is also eventually fragmented.

Proof (1) If fi (D) is ε-small for every i = 1, . . . , n and
∑n

i=1|ci | ≤ 1, ci ∈ R, then∑n
i=1 ci fi (D) is ε-small. ��

Lemma 2.16 Let F ⊂ X be a fragmented family of functions from a topological space X
into a uniform space Y . Then the pointwise closure F

p
is also a fragmented family.

Proof Let A ⊂ X be a nonempty subset and ε ∈ μ. Choose δ ∈ μ such that δ3 ⊂ ε. There
exist an open subset O ⊂ X such that O ∩ A 
= ∅ and f (O ∩ A) is δ-small for every
f ∈ F . Let h ∈ F

p
. For this h and a given pair x, y ∈ O ∩ A (by definition of the pointwise

topology), there exists f0 ∈ F such that

(h(x), f0(x)) ∈ δ, ( f0(y), h(y)) ∈ δ.

Since f0(O ∩ A) is δ-small, we have ( f0(x), f0(y)) ∈ δ. So, we obtain (h(x), h(y)) ∈ ε.
Therefore, h(O ∩ A) is ε-small, as desired. ��

The following lemma is inspired by results of Namioka and it can be deduced after some
reformulations from [40, Theorems 3.4 and 3.6].

Lemma 2.17 [19, Theorem 2.6] Let F be a bounded family of real-valued continuous func-
tions on a compact space X. The following conditions are equivalent:

(1) F is a fragmented family of functions on X.
(2) Every countable subfamily C of F is fragmented on X.
(3) For every countable subfamily C of F the pseudometric space (X , ρC ) is separable,

where

ρC (x1, x2) := sup
f ∈C

| f (x1)− f (x2)|.

Lemma 2.18 Let X be a topological space. If F ⊆ C(X) is a (eventually) fragmented family,
then so is its closure F in the uniform topology of C(X).

Proof The case of fragmented families is a consequence of Lemma 2.16. We are left with
the case of eventually fragmented families.

Suppose that { fn}n∈N ⊆ F ⊆ C(X). By definition, we can find {gn}n∈N ⊆ F such that

∀x ∈ X : | fn(x)− gn(x)| < 1

n
.

Since F is eventually fragmented, we can find a subsequence {nk}k∈N ⊆ N such that {gnk }k∈N
is fragmented. We claim that { fnk }k∈N is also fragmented.

Let A ⊆ X be non-empty and ε > 0. By definition, there exists some open O ⊆ X such
that A∩O 
= ∅ and gnk (A∩O) is 1

3ε-small for every k ∈ N. Choose x ∈ A∩O and n0 ∈ N

such that 1
n0
≤ 1

3ε. Since { fn}n∈N ⊆ C(X), we can find a neighborhood x ⊆ U ⊆ O such
that for every 1 ≤ m ≤ n0, fm(U ) is ε-small.
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(1) If nk ≤ n0, then fnk (U ∩ A) ⊆ fnk (U ) is ε-small by our construction.
(2) Otherwise, ‖ fnk − gnk‖ ≤ 1

3ε. Moreover, gnk (U ∩ A) ⊆ gnk (O ∩ A) is 1
3ε-small.

Therefore, we conclude that fnk (U ∩ A) is ε-small.

In either case, fnk (U ∩ A) is ε-small, as required. Also, note that x ∈ U ∩ A 
= ∅. ��
Corollary 2.19 Let X be a compact space. If F ⊆ C(X) is a (eventually) fragmented family,
then so is acx wF, where the closure is taken with respect to the weak topology induced by
the supremum norm.

Proof By Mazur’s Theorem (Fact 2.3), acx wF = acx F . Now, we can apply Lemma 2.15
and Lemma 2.18 to get the desired result. ��
Remark 2.20 An important example for the use of fragmented families (Definition 2.12) is
in the case of bounded sets in Banach spaces. If B ⊆ V is a bounded subset of a Banach
space and K ⊆ V ∗ is a weak-star compact subset, then we can view B as a family of
functions over K . In this case, B is fragmented iff for every non-empty subset A ⊆ K and
ε > 0 there exists a weak-star open subset O ⊆ V ∗ such that O ∩ A is not empty and
diam{〈v, x〉 : x ∈ O ∩ A, v ∈ B} < ε.

For some other properties of fragmentedmaps and fragmented families, we refer to [14, 15,
17, 26, 33, 34, 40]. Basic properties and more applications of fragmentability in topological
dynamics can be found in [15, 17, 18, 33, 34].

Independent and tame families of functions.Asequenceof real functions { fn : X → R}n∈N
on a set X is said to be (combinatorially) independent (see [48, 53]) if there exist real numbers
a < b (bounds of independence) such that⋂

n∈P
f −1n (−∞, a) ∩

⋂
n∈M

f −1n (b,∞) 
= ∅

for all finite disjoint subsets P, M of N.

Definition 2.21 [17, 19] A bounded family F of real-valued (not necessarily, continuous)
functions on a set X is a tame family if F does not contain an independent sequence.

Lemma 2.22 [19, Lemma 6.4] Suppose that π : X → Y is a map and F ⊆ R
Y is a family

of bounded functions. If F is tame then F ◦ π is tame. Moreover, if π is onto, the converse
is also true.

The following fact from [30] can easily be derived using the finite intersection property
characterization of the compactness.

Fact 2.23 Suppose that { fn}n∈N is an independent family of continuous functions over a
compact X. Then there are a < b ∈ R such that for every disjoint, possibly infinite P,

M ⊆ N: ⋂
n∈P

f −1n (−∞, a) ∩
⋂
n∈M

f −1n (b,∞) 
= ∅.

By [37], every bounded family of (not necessarily continuous) functions [0, 1] → R with
total bounded variation (e.g.,Haar systems) is tame. This remains true replacing the set [0, 1]
by any circularly (e.g., linearly) ordered set.

As to the negative examples. The sequence of projections on the Cantor cube and the
sequenceofRademacher functions on theunit interval both are independent (hence, nontame).
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A critically important example of a nontame sequence is the standard basis sequence
{en : n ∈ N} in l1 as a family of functions on the unit ball of (l1)∗ = l∞.

The following useful lemma synthesizes some known results. It is based mainly on results
of Rosenthal and Talagrand. The equivalence of (1), (3) and (4) is a part of [53, Thm. 14.1.7].
For the case (1) ⇔ (2), note that every bounded independent sequence { fn : X → R}n∈N
is an l1-sequence (in the sup-norm), [48, Prop. 4]. On the other hand, as the proof of [48,
Thm. 1] shows, if { fn}n∈N has no independent subsequence then it has a pointwise convergent
subsequence. Bounded pointwise-Cauchy sequences in C(X) (for compact X ) are weak-
Cauchy as it follows by Lebesgue’s theorem. Now Rosenthal’s dichotomy theorem [48]
asserts that { fn} has no l1-sequence. In [15, Sect. 4] we show why eventual fragmentability
of F can be included in this list (item (5)).

Lemma 2.24 Let K be a compact space and F is a bounded subset in the Banach space
C(K ). The following conditions are equivalent:

(1) F does not contain an l1-sequence.
(2) F is a tame family on K .
(3) Each sequence in F has a pointwise convergent subsequence in R

K .
(4) The pointwise closure cl (F) of F in R

K consists of fragmented maps.
(5) F is an eventually fragmented family on K .

Rosenthal’s dichotomy and Rosenthal’s Banach spaces. For every topological space X
denote by C(X) the vector space of all continuous real functions. When X is compact, as
usual, we suppose that C(X) is endowed with the supremum norm. So, it will be a Banach
subspace of l∞(X).

Let { fn : X → R}n∈N be a bounded sequence of functions on a set X . FollowingRosenthal
[48], we say that this sequence is an l1-sequence if there exists a constant δ > 0 such that
for all n ∈ N and choices of real scalars c1, . . . , cn , we have

δ ·
n∑

i=1
|ci | ≤

∥∥∥∥∥
n∑

i=1
ci fi

∥∥∥∥∥
∞

.

Then the closed linear span of { fn}n∈N in l∞(X) is linearly homeomorphic to the Banach
space l1. In fact, in this case the map l1 → l∞(X), (cn)n∈N → ∑

n∈N cn fn is a linear
homeomorphic embedding.

A sequence of vectors in a Banach space can be defined to be equivalent to an l1-sequence
analogously.According toRosenthal’s dichotomy, every bounded sequence in aBanach space
either has a weak Cauchy subsequence or admits an l1-sequence. Thus, a Banach space V
does not contain an l1-sequence (equivalently, does not contain an isomorphic copy of l1) iff
every bounded sequence in V has a weak Cauchy subsequence, [48]. As in [15, 18], we call
a Banach space satisfying these equivalent conditions a Rosenthal Banach space.

Definition 2.25 Let V be a normed space and M ⊂ V ∗ be a subset in the dual space V ∗. A
bounded subset F of V is said to be tame for M if F , as a family of functions on M , is a tame
family. If F is tame for the unit ball BV ∗ of V ∗ (equivalently, for every bounded subset), then
we simply say that F is a tame subset in V .

Lemma 2.26 Let V be a normed space, A ⊆ V and M ⊆ V ∗ be bounded subsets. If A is not
tame over M, then A contains an l1-sequence in V .

Proof It is a known consequence of theHahn–Banach theorem that V is isometrically embed-
ded into C(BV ∗). Applying Lemma 2.24, we get the desired result. ��

123



  113 Page 12 of 53 M. Komisarchik, M. Megrelishvili

The following characterization of Rosenthal Banach spaces is a reformulation of some
known results (see, in particular, [51] and Lemma 2.24).

Lemma 2.27 Let V be a Banach space. The following conditions are equivalent:

(1) V is a Rosenthal Banach space;
(2) each x∗∗ ∈ V ∗∗ is a fragmented map when restricted to the weak∗ compact ball BV ∗ of

V ∗. Equivalently, BV ∗∗ ⊂ F(BV ∗);
(3) the unit ball BV is a tame subset of V ;
(4) any bounded subset of V is tame for any bounded subset of V ∗.

Proof (1) ⇒ (4) A consequence of Lemma 2.26.
(4) ⇒ (3) Trivial.
(3) ⇒ (2) Suppose that BV is a tame family over
BV ∗ . Using Lemma 2.24, we can conclude that cl p(BV) ⊆ F(BV∗).
On the other hand, BV ∗∗ = cl p(BV) by Goldstein’s theorem. Hence, BV ∗∗ ⊂ F(BV ∗).
(2) ⇒ (1) Use [51, Thm. 3]. ��

The Double Limit Property (DLP). Recall Grothendieck’s double limit property.

Definition 2.28 Let F ⊂ R
K be a family of real functions on a set K . Then F is said to

have the double limit property (DLP) if for every sequence { fn}n∈N in F and every sequence
{xn}n∈N in K , the limits

lim
n

lim
m

fn(xm) and lim
m

lim
n

fn(xm)

are equal whenever they both exist.

We will often write that a subset is DLP rather than the more correct “has the DLP".

Lemma 2.29

(1) If { fm}m∈N is a bounded sequence of functions on K and {xn}n∈N ⊆ K, then there exist
subsequences {nk}k∈N, {mt }t∈N ⊆ N such that

lim
k∈N limt∈N fnk (xmt ) and lim

t∈N lim
k∈N fnk (xmt )

exist.
(2) If A ⊂ l∞(K ) is a bounded family of functions over K satisfying the DLP, then so does

the balanced hull bal A (see Definition 2.1).
(3) If A1, A2 are bounded sets of functions over K satisfying the DLP, then so does A + B.
(4) Suppose that ϕ : K1 → K2 is a continuous map and F ⊆ C(K2) is DLP. Then F ◦ ϕ ⊆

C(K1) is DLP. Moreover, if ϕ is surjective, then the converse is also true. Namely, if
F ◦ ϕ ⊆ C(K1) is DLP then so is F.

Proof

(1) Wewill show amore general fact. Suppose that A and B are sets and 〈·, ·〉 : A×B → R is
a map. Also, let {an}n∈N ⊆ A and {bm}m∈N ⊆ B be sequences such that 〈·, ·〉 is bounded
over them. Then there exist subsequences {nk}k∈N, {mt }t∈N ⊆ N such that the limit

lim
k∈N limt∈N〈ank , bmt 〉

exist. By applying this fact twice we will get the desired result.
First, note that the sequence {〈an, bm〉}m∈N ⊆ R is bounded for every n ∈ N. We can
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thus use induction and a diagonal argument to construct a subsequence {mt }t∈N such
that {〈an, bmt 〉}t∈N converges for every n ∈ N. Write αn := limt∈N〈an, bmt 〉. Note that
{αn}n∈N ⊆ R is a bounded sequence so there exist a subsequence {nk}k∈N ⊆ N such that
{αnk }k∈N converges. However:

lim
k∈Nαnk = lim

k∈N limt∈N〈ank , bmt 〉,

as required.
(2) Suppose that {αn fn}n∈N ⊆ bal A and {xm}m∈N ⊆ K such that

lim
n∈N lim

m∈Nαn fn(xm) and lim
m∈N lim

n∈Nαn fn(xm)

exist. By definition, {αn}n∈N ⊆ [−1, 1] and is therefore bounded. Thus, we can apply
Lemma 2.29 and the Bolzano-Weierstrass theorem to find subsequences {nk}k∈N ⊆ N

and {mt }t∈N ⊆ N such that:

lim
k∈Nαnk , lim

k∈N limt∈N fnk (xmt ) and lim
t∈N lim

k∈N fnk (xmt )

exist. Moreover, since A is DLP, we know that

lim
k∈N limt∈N fnk (xmt ) = lim

t∈N lim
k∈N fnk (xmt ).

Together we get:

lim
n∈N lim

m∈Nαn fn(xm) = lim
k∈N limt∈N αnk fnk (xmt ) =

(
lim
k∈Nαnk

)
lim
k∈N limt∈N fnk (xmt )

=
(
lim
k∈Nαnk

)
lim
t∈N lim

k∈N fnk (xmt ) = lim
t∈N lim

k∈Nαnk fnk (xmt )

= lim
m∈N lim

n∈Nαn fn(xm)

as required.
(3) and (4) are easy to check.

��

Fact 2.30 (N.J. Young [57, Thm. 2]) Let E and F be topological vector spaces and
A ⊆ E, B ⊆ F. Furthermore, let 〈·, ·〉 : E × F → R be a bilinear map bounded on A× B.
If A has the DLP as a family of functions over B, then so does the bipolar A◦◦.

If E is locally convex, we can apply the Bipolar Theorem (Fact 2.2) to conclude that
acx wA is DLP over B.

Lemma 2.31 Suppose that K is compact and A ⊆ C(K ) is a bounded family of functions
that satisfies the DLP. Then so does acx wA.

Proof Suppose that A ⊆ C(K ) is a bounded family with the DLP over K . Now, consider
K as a subspace of the free topological vector space L(K ). By definition, every f ∈ A can
be extended uniquely to a continuous linear operator on L(K ). This gives a bilinear pairing
〈·, ·〉 : A × K defined by 〈 f , x〉 := f (x).

Also, since A is bounded, so is the image of A× K under this bilinear map. By applying
Fact 2.30, we conclude that acx wA is DLP over K . ��
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Additional preliminaries. Suppose that E is a vector space and A ⊆ E is a subset. The
open segment between two distinct points x, y ∈ E is defined as

(x, y) := {αx + (1− α)y | 0 < α < 1}.
A point x ∈ A is said to be an extreme point of A if it does not belong to any open segment
contained in A, [25]. If A is convex, x ∈ A is extreme in A if and only if x = 1

2 (a + b) for
a, b ∈ A implies x = a = b. We write ext A for the set of all extreme points of A.

Lemma 2.32 Let T : E → F be a continuous and linear map between locally convex spaces
and A ⊆ E be compact. Then:

(1) ext T (A) ⊆ T (ext A);
(2) if T , in addition, is injective then ext T (A) = T (ext A);
(3) suppose that M ⊆ F∗. Then

T (T ∗(M)◦) = (Im T ) ∩ M◦.

Proof (1) Write K := ker T . Let y ∈ ext T (A). Since T is continuous, Ky := A∩ T−1({y})
is a closed, non-empty subset of A. It is also compact because A is compact. We claim that
ext Ky ⊆ ext A. Indeed, suppose that x ∈ ext Ky and x = 1

2 (a + b) for a, b ∈ A. As a
consequence,

y = T (x) = 1

2
(T (a)+ T (b)).

However, since y ∈ ext T (A), we conclude that y = T (a) = T (b). By definition, a, b ∈ Ky .
Finally, since x ∈ ext Ky , we conclude that x = a = b, proving that x ∈ ext A.

Applying the Krein-Milman Theorem, ext Ky 
= ∅. Choose x0 ∈ ext Ky ⊆ ext A. By
definition, y = T (x0) ∈ T (ext A), as required.

(2) [42, Thm. 9.2.3].
(3)

y ∈ T (T ∗(M)◦) ⇐⇒ ∃x ∈ T ∗(M)◦ : y = T (x)

⇐⇒ ∃x ∈ E : y = T (x) and ∀ ϕ ∈ M : |(T ∗(ϕ))(x)| ≤ 1

⇐⇒ ∃x ∈ E : y = T (x) and ∀ ϕ ∈ M : |ϕ(T (x))| ≤ 1

⇐⇒ y ∈ Im T and ∀ ϕ ∈ M : |ϕ(y)| ≤ 1

⇐⇒ y ∈ (Im T ) ∩ M◦.

��
Definition 2.33 Let M ∈ eqc (E∗) and ρM be the continuous seminorm on E defined by

ρM (x) := sup
ϕ∈M

|ϕ(x)|.

We say that M is (R∗1) if there is no bounded l1-sequence in E with respect to ρM .

Lemma 2.34 Let M ⊆ E∗ be an equicontinuous compact subset. There exist: a continuous,
onto and open linear map π : E → V to a normed space V and a weak-star continuous
linear operator � : SpanM → V ∗ with dense image, such that BV ∗ = acx ∗(�(M)) and
idM = π∗ ◦�.
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Proof Write N := acx w∗M and consider the space W := Span N with the gauge qN as
norm. For every x ∈ E , consider the evaluation ex : N → R defined by ex (ϕ) := ϕ(x).

By Lemma 2.10, BW = N . Also, N is weak-star compact, so ex (N ) = N (x) is a bounded
subset of R for every x ∈ E . As a consequence, ex ∈ W ∗ is a bounded functional.

Write V1 := W ∗ and define the linear map π1 : E → V1 by π1(x) := ex . Consider the
continuous seminorm ρN (Definition 2.33). We claim that π1 is a seminorm preserving map
from (E, ρN ) to (W ∗, ‖‖).

Indeed, for every x ∈ E we have:

‖π1(x)‖ := sup
ϕ∈N

|(π1(x))(ϕ)| := sup
ϕ∈N

|ϕ(x)| := ρN (x).

Thus, π1 is necessarily continuous and open onto its image.
Let �1 : W → W ∗∗ = V ∗1 be the canonical map. Note that it is not necessarily weak-star

continuous. We claim that idM = π∗1 ◦�1. Suppose that ϕ ∈ M and x ∈ E :

((π∗1 ◦�1)(ϕ))(x) := (π∗1 (�1(ϕ)))(x)

= (�1(ϕ))(π1(x))

= (π1(x))(ϕ)

= ϕ(x) = (idM (ϕ))(x).

Also, by Goldstine’s theorem [4, p. IV.17 Proposition 5]:

BV ∗1 = BW ∗∗ = (�1(BW ))
w∗ = �1(N )

w∗
.

Finally, define V := Im π1 and the onto operator π : E → V induced by π1. It is easy to
see that π remains continuous and open onto its image. Also, let i : V → V1 be the inclusion
map. Define � : Span N → V ∗ by � = i∗ ◦�1.

We claim that � is weak-star continuous. For the purpose of this proof, write:

UX (a1, . . . , an; ε) := { f ∈ X | ∀1 ≤ i ≤ n : | f (ai )| < ε}.
Suppose that y1, . . . yn ∈ V and ε > 0. By definition, we can find x1, . . . , xn ∈ E such that
π1(xi ) = yi for every 1 ≤ i ≤ n. We will now show that:

�
(
USpan N (x1, . . . , xn; ε)

) ⊆ UV ∗(y1, . . . , yn; ε).
Indeed, for every ϕ ∈ �

(
USpan N (x1, . . . , xn; ε)

)
and 1 ≤ i ≤ n we have:

|(�(ϕ))(yi )| = |(�(ϕ))(π1(xi ))| = |((π∗1 ◦�)(ϕ))(xi )| = |ϕ(xi )| < ε.

Now:

π∗ ◦� = π∗ ◦ i∗ ◦�1 = (i ◦ π)∗ ◦�1 = π∗1 ◦�1 = idM .

In virtue of the Hahn–Banach theorem, BV ∗ = i∗(BV ∗1 ). Moreover, it is easy to see that

�(M) = i∗(�1(M)) ⊆ i∗(�1(BW )) ⊆ i∗(BV ∗1 ) = BV ∗ ,

and therefore

BV ∗ = i∗(BV ∗1 ) = i∗
(
�1(N )

w∗) ⊆ (i∗ ◦�1)(N )
w∗ = �(N )

w∗

= �(acx w∗M)
w∗ ⊆ acx w∗�(M) ⊆ BV ∗ .
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Note that we used the continuity of i∗ and �. In other words: BV ∗ = acx w∗�(M). Finally,
acxM is dense in N and therefore �(acxM) is dense in �(N ). Since �(N ) is absorbing in
V ∗, �(SpanM) is dense in V ∗. ��
Lemma 2.35 (Equicontinuous Factor Lemma) Let M ⊆ E∗ be an equicontinuous compact
subset. There exist: a continuous, dense and open onto its image linear map π : E → V to
a Banach space V and a linear operator � : SpanM → V ∗ with dense image, weak-star
continuous over M, such that BV ∗ = acx ∗(�(M)) and idM = π∗ ◦�.

Proof Let � : SpanM → V ∗ and π : E → V be the maps described in Lemma 2.34.
Consider the completion V̂ and the inclusion map i : V → V̂ . Note that �(M) is weak-star
compact as a continuous image of a compact set.

Also, V is normed so we can use the Banach-Steinhaus Theorem to conclude that�(M) is
equicontinuous. Using Lemma 2.8, we can find a weak-star compact, equicontinuous subset
M̂ ⊆ V ∗ such that �(M) = i∗(M̂). As a consequence, i∗ is a closed map on M̂ . Also,
since V is dense in V̂ , i∗ is injective. Therefore, i∗ is a weak-star homeomorphism on M̂ .
We define π̂ := i ◦ π and �̂ := (i∗)−1 ◦�.

Forgetting the earlier notations of V , π and �, we can define V := V̂ , π := π̂ and
� := �̂ to get the desire result. ��
Remark 2.36 Note that unlike in Lemma 2.34, we can’t guarantee that � is weak-star con-
tinuous over SpanM , but only over M .

Lemma 2.37 Let D ⊆ E be a disk, ϕ ∈ E∗ and ε := ϕ−1((−1, 1)). Suppose that for some
disk neighborhood δ ⊆ E we have δ ∩ D ⊆ ε ∩ D. Then there exists ϕ̂ ∈ δ◦ such that
ϕ|D = ϕ̂|D.

Proof It is easy to see that for every x ∈ Span(D) we have |ϕ(x)| ≤ qδ(x), where

qδ(x) := inf{r > 0 | x ∈ rδ}
is the gauge of δ. By the Hahn–Banach Theorem, we can find a continuous functional ϕ̂ on
E which agrees with ϕ on Span(D) and for every x ∈ E : |ϕ̂(x)| ≤ qδ(x).

Clearly, this also implies that ϕ̂ is continuous and therefore belongs to E∗. Moreover, for
every x ∈ δ we have |ϕ̂(x)| ≤ qδ(x) ≤ 1. By definition of the polar, ϕ̂ ∈ δ◦. ��
Fact 2.38 [25, p. 131, Corollary 5] Suppose that A, B ⊆ E are non-empty subsets. If A is
closed and absolutely convex, B is compact and A ∩ B = ∅, then there exists ϕ ∈ E∗ such
that:

sup
x∈A

|ϕ(x)| < inf
y∈B|ϕ(y)|.

The following is a probablywell knownconsequence of theBanach-Grothendieck theorem
[25, p. 147 Thm. 2] and Fact 2.38.

Lemma 2.39 Let K be a compact space, and let i : K ↪→ C(K )∗ be the standard weak-star
embedding. Then acx w∗ i(K ) = BC(K )∗ .

3 Bornological classes

A bornology B on a lcs E is a family of subsets in E which covers E , and is hereditary under
inclusion (i.e. if A ∈ B and B ⊆ A then B ∈ B) and finite unions. So, every bornology
contains all finite subsets.
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A vector bornology [24, Definition 1:1’2] is a bornology B on E such that whenever
A, B ∈ B and α ∈ R we have:

(1) A + B ∈ B;
(2) bal A ∈ B.
If B is closed under taking convex hulls, it is said to be a convex bornology. It is said to
be saturated if the closure of sets in B remains in B. Moreover, it is separated if it has no
non-trivial bounded subspaces.

Definition 3.1 A bornological class B is an assignment

Comp → {Bornologies}, K �→ BK

from the class of all compact spaces Comp to the class of vector bornologies such that BK

is a separated convex vector bornology on the Banach space C(K ) satisfying the following
properties:

(1) boundedness:BK consists of bounded subsets in C(K ).
(2) consistency: Suppose that ϕ : K1 → K2 is a continuous map.

(a) If A ∈ BK2 , then A ◦ ϕ ∈ BK1 .
(b) If ϕ is surjective, then the converse is also true, namely that A ◦ ϕ ∈ BK1 implies

A ∈ BK2 .

(3) Bipolarity: If A ∈ BK , then A◦◦ = acx wA ∈ BK where the polar is taken with respect
to the dual C(K )∗ (note that we use the Bipolar Theorem).

We write [T], [NP] and [DLP] for the classes of tame, fragmented and DLP function
families, respectively. Recall that by Lemma 2.24, [T] coincides with the class of eventually
fragmented families.

Proposition 3.2 [T], [NP] and [DLP] are bornological classes.
Proof First, it is obvious that all three of these classes consist of vector bornologies. We
organize the rest of the proof in the following table: ��

Property [T] [NP] [DLP]
Boundedness By definition By definition By definition
Consistency Lemma 2.22 Lemma 2.14 Lemma 2.29.4
Bipolarity Corollary 2.19 Corollary 2.19 Lemma 2.31

The following is easy to see.

Lemma 3.3 The only separated, convex, vector bornology on R is the Euclidean bornology
Be (i.e. the bornology of bounded subsets with respect to the Euclidean norm).

Definition 3.4 LetB be a bornological class. A bounded subset B ⊆ E is said to beB-small
if rM (B) ∈ BM for every M ∈ eqc (E∗), where rM : E → C(M) is the restriction operator.
A locally convex space is said to be B-small if every bounded subset is B-small.
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Lemma 3.5 Let E be a locally convex space and B a bornological class. The family of
B-small subsets in E is a saturated, convex vector bornology, denoted by small (B, E).

Proof The only non-trivial assertion is that small (B, E) is saturated. Suppose that
A ∈ small (B, E). We show that A ∈ small (B, E). Let M ∈ eqc (E∗) and r : E → C(M)

be the restriction operator. By definition, r(A) ∈ BM . Also, since B satisfies bipolarity,
r(A) ⊆ r(A)

w ⊆ (r(A))◦◦ ∈ BM . By continuity, r(A) ⊆ r(A). Hence, r(A) ∈ BM .
Therefore, A ∈ small (B, E). ��

Lemma 3.6 Suppose that T : E → F is a continuous linear map between locally convex
spaces, B ⊆ E is bounded and M ∈ eqc (F∗).

Let rT ∗(M) : E → C(T ∗(M)) and rM : F → C(M) be the restriction maps. Then
rT ∗(M)(B) ∈ BT ∗(M) if and only if rM (T (B)) ∈ BM.

Proof We will show that:

rM (T (B)) = rT ∗(M)(B) ◦ T ∗.
The claim is then obvious from the consistency

property (whichwe apply for themapM → T ∗(M)). Indeed, for every x ∈ B and ϕ ∈ M ,
we have:

(rM (T (x)))(ϕ) := ϕ(T (x)) = (T ∗(ϕ))(x) = (rT ∗(M)(x))(T
∗(ϕ)) = (rT ∗(M)(x) ◦ T ∗)(ϕ).

��

Lemma 3.7 Suppose that T : E → F is a continuous linear map and A ∈ small (B, E).
Then T (A) ∈ small (B, F).

Proof Let M ∈ eqc (F∗). By definition, rE (A) ∈ BE . Applying Lemma 3.6, we conclude
that rF (T (A)) ∈ BM . This is true for every M ∈ eqc (F∗), proving the desired result. ��

Recall that a continuous linear (onto) map f : E1 → E2 is said to be bound covering if
for every bounded B2 ⊂ E2 there exists a bounded subset B1 ⊂ E1 such that f (B1) = B2.

Corollary 3.8 The class of B-small locally convex spaces is closed under bound covering
maps.

In Proposition 5.7, we show that “bound covering" is really essential.

Proposition 3.9 The class of B-small locally convex spaces is closed under taking linear
subspaces. In fact, if E is a locally convex space, F ⊆ E is a subspace and B ⊆ F is a
bounded subset, then B ∈ small (B, E) if and only if B ∈ small (B, F).

Proof First, if B ∈ small (B, F) then clearly B ∈ small (B, E) in virtue of Lemma 3.7.
Conversely, suppose that B ∈ small (B, E). We will show that B ∈ small (B, F). Let
M ∈ eqc (F∗). By Lemma 2.8, we can find N ∈ eqc (E∗). such that i∗(N ) = M where
i : F → E is the inclusion map. Let rE : E → C(N ) and rF : F → C(M) be the restriction
maps. B = i(B) ∈ small (B, E) by definition, and therefore rE (i(B)) ∈ BN . Applying
Lemma 3.6, we conclude that rF (B) ∈ Bi∗(N ) = BM . This is true for every M ∈ eqc (F∗)
and therefore B ∈ small (B, F). ��
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Suppose that E := ∏n
i=1 Ei is the product of topological vector spaces {Ei }ni=1. Write

πi : E → Ei for the projection map. Also, let�i : Ei → E be the dissection map sending an
element x ∈ Ei to an element of E whose i’th entry is x and the rest are 0. Finally, consider
the adjoint map �∗

i : E∗ → E∗i defined by �∗
i (ϕ) := ϕ ◦�i .

Lemma 3.10 Let E1, . . . , En be locally convex spaces, Ai ⊆ Ei for i ∈ {1, . . . , n} and
M ⊆ E∗ be subsets. Consider E = ∏n

i=1 Ei and A = ∏n
i=1 Ai . For every 1 ≤ i ≤ n, let

ri : Ei → C(�∗
i (M)) and r : E → C(M) be the restriction maps. Then

r(A) ⊆
n∑

i=1
ri (Ai ) ◦�∗

i .

Proof Indeed, suppose that a = (a1, . . . , an) ∈ A, meaning that ai ∈ Ai for every 1 ≤ i ≤ n.
We claim that

r(a) =
n∑

i=1
ri (ai ) ◦�∗

i ∈
n∑

i=1
ri (Ai ) ◦�∗

i .

Let ϕ ∈ M . For every x ∈ E we can write

x =
n∑

i=1
�i (πi (x)),

and therefore

ϕ(x) = ϕ

(
n∑

i=1
�i (πi (x))

)
=

n∑
i=1

(ϕ ◦�i )(πi (x)) =
n∑

i=1
(�∗

i (ϕ))(πi (x)).

In particular,

(r(a))(ϕ) := ϕ(a) =
n∑

i=1
(�∗

i (ϕ))(ai ) =
n∑

i=1
(ri (ai ) ◦�∗

i )(ϕ).

��
Remark 3.11

(1) [52, IV 4.3, Theorem] Let E = ∏
i∈I Ei be a product of lcs Ei . Then its dual E∗ is

algebraically the locally convex direct sum
⊕

i∈I E∗i with the corresponding duality

E × E∗ → R, (v, u) =
(

(vi )i∈I ,
∑
i∈I

ui

)
�→

∑
i∈I
〈vi , ui 〉.

[25, Section 8.8, Proposition 1] A basis of the equicontinuous compactology eqc (E∗)
on E∗ is obtained by taking all sets of the form

∑
j∈J Hj , where J is finite and Hj ∈

eqc (E j ).
(2) [52, IV 4.3, Corollary 1] Similarly, if E = ⊕

i∈I Ei is a lc sum then its dual E∗ is
algebraically the locally convex product

∏
i∈I E∗i with the corresponding duality

E × E∗ → R, (v, u) =
(∑

i∈I
vi , (ui )i∈I

)
�→

∑
i∈I
〈vi , ui 〉.
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A basis of the equicontinuous compactology eqc (E∗) on E∗ is obtained by taking all
sets of the form

∏
i∈I Hi , where Hi ∈ eqc (Ei ).

By [52, II, 6.3], for every bounded subset B of a locally convex direct sum
⊕

i∈I Ei ,

there exists a finite set J ⊂ I such that pri (B) is zero for every i /∈ J .

Lemma 3.12 Let E1, . . . , En be locally convex spaces and let Ai ⊆ Ei for i ∈ {1, . . . , n} be
B-small subsets. Then A = ∏n

i=1 Ai isB-small in E = ∏n
i=1 Ei .

Proof LetM ∈ eqc (E∗). ThenMi := �∗
i (M) ∈ eqc (E∗i ),where�∗

i : E∗ → E∗i are defined
as in Lemma 3.10. As before, let ri : Ei → C(Mi ) be the restriction map. By definition,
ri (Ai ) ∈ BMi . SinceB is a bornological class, this implies that ri (Ai )◦�∗

i ∈ BM for every
1 ≤ i ≤ n. Also, BM is a linear bornology and therefore A′ := ∑n

i=1 ri (Ai ) ◦ �∗
i ∈ BM .

By Lemma 3.10, r(A) ⊆ A′, proving the desired result. ��
The following remark is a consequence of the previous lemma and Lemma 3.3.

Remark 3.13 If B is a bornological class and F is finite, then BF is simply the Euclidean
bornology.

Corollary 3.14 Arbitrary products and direct sums of B-small spaces areB-small.

Proof First consider the case of products. Let {Ei }i∈I be a family of B-small spaces. Let
B ⊆ E := ∏

i∈I Ei be bounded, M ∈ eqc (E∗) and r : B → C(M) be the restriction map.
We show that r(B) ∈ BM . Indeed, using Remark 3.11.1, we know that there is a finite J ⊆ I
and Hj ∈ eqc (E∗j ) such thatM ⊆ ∑

j∈J Hj . Thus, the system (B, M)where B is considered
as a family of functions over M can be isomorphically embedded in (

∏
j∈J E j ,

∏
j∈J E∗j ).

However, this family is B-small as a consequence of Lemma 3.12.
For the case of direct sums, we use a very similar technique, this time leveraging Remark

3.11.2 by factoring the bounded set to finite components rather than the equicontinuous
family. ��
Corollary 3.15 If B is a bornological class, then every locally convex E with the weak
topology isB-small.

Proof First, recall that Ew can be embedded inR
E∗ . In virtue of Theorem3.17, Ew isB-small

as a subspace of the product ofB-small spaces. ��
Lemma 3.16 Suppose that B is a bornological class and F is a dense large subspace of a
lcs E. Then F is B-small if and only if E is B-small.

Proof If E is B-small then so is F in virtue of Proposition 3.9. Conversely, assume that F
is B-small. Suppose that B ⊆ E is bounded. By definition, there is a bounded C ⊆ F such
that B ⊆ C . Since F isB-small, C ∈ small (B, F). Applying Proposition 3.9, we conclude
that C ∈ small (B, E). Finally, using Lemma 3.5, we conclude that B ⊆ C ∈ small (B, E) .

��
Theorem 3.17 The class ofB-small locally convex spaces is closed under:

(1) subspaces
(2) bound covering maps
(3) products
(4) direct sums
(5) inverse limits.

Moreover, if F is a large, dense subspace of the locally convex space E, and F is B-small,
then so is E. In particular, if V is a normed B-small space, then so is its completion.

Proof Apply Corollary 3.8, Proposition 3.9, Corollary 3.14 and Lemma 3.16. ��
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3.1 Relation to theMackey topology

Definition 3.18 LetB be a bornological class. A bounded subset B ⊆ E is said to beMackey
B-small if for every absolutely convex weak-star compact, (not necessarily equicontinuous)
subset M ⊂ E∗, B viewed as a bounded family of functions on M belongs toBM . A locally
convex space is said to beMackey B-small if every bounded subset is B-small.

Recall that theMackey topology on a lcs (E, τ ) is the strongest topology compatible with
its dual E∗. We will often denote it as τμ. It is exactly the polar topology induced by all
weak-star compact, absolutely convex subsets of E∗ [52, p. 131]. E is said to be a Mackey
space if τ = τμ.

Proposition 3.19 A bounded subset B in E is Mackey B-small if and only if it is B-small
with respect to the Mackey topology. The same can be said for the entire space E.

Proof Recall ( [25, p. 158, Thm. 5]) that the Mackey topology is compatible with the dual
E∗. As a consequence, it has the same absolutely convex, weak-star compact subsets as the
usual topology. Therefore, if B is Mackey B-small, then B is B-small with respect to the
Mackey topology.

Conversely, suppose that B is B-small with respect to the Mackey topology, and let
M ⊆ E∗ be an absolutely convex weak-star compact subset.

By definition, the polarM◦ is an open neighborhood of zero in theMackey topology. Thus,
M◦◦ is equicontinuous. As a consequence, B is B-small over M◦◦. However, M ⊆ M◦◦,
and therefore B is B-small over M , as required. ��

A lcs E is said to be barreled if every barrel (Definition 2.1) is a neighborhood of zero.
This class includes all reflexive and completemetrizable (i.e., Frechet) spaces. By [52, p. 132,
Lemma 3.4], every barreled or metrizable space is a Mackey space.

Corollary 3.20 If E is a Mackey space (e.g., barreled or metrizable), then it isB-small if and
only if it is Mackey B-small.

For basic information about Mackey topologies and related topics, we refer to [25, 52].
For some generalizations see [1].

3.2 The co-bornology and strongest topologies

Definition 3.21 Abornological classB is said to be polarly compatible if whenever A ∈ BK

for compact K , then rBC(K )∗ (A) ∈ BBC(K )∗ where rBC(K )∗ : C(K ) → C(BC(K )∗) is the
canonical map defined by:

(rBC(K )∗ ( f ))(ϕ) := ϕ( f ).

For every lcs (e.g., Banach space) (E, τ ) and a bornological classB, one may define the
strongest locally convex B-small topology τB on E . We mean the supremum of allB-small
locally convex topologies on E which are coarser than τ . Since the class of B-small spaces
is closed under products and subspaces (by Theorem 3.17), we obtain that τB is well-defined
and it is aB-small locally convex topology on E (such that τB ⊆ τ ). The weak topology τw

on E is always B-small (by Corollary 3.15), and therefore

τw ⊆ τB ⊆ τ.
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Asa consequence, τB is always aHausdorff locally convex topologyon E . Below, inTheorem
3.36, we give a description of this topology for polarly compatible classes as a naturally
defined polar topology.

Lemma 3.22 [15, Prop. 4.19] Let K be a compact space and F ⊂ C(K ) is bounded. Then
F is a tame family for K if and only if F is a tame family for the weak-star compact unit ball
BC(K )∗ . Equivalently, F is a tame subset (in terms of Definition 5.1) of the Banach space
C(K ).

Corollary 3.23 The class [T] is polarly compatible.
Remark 3.24 [NP] is also polarly compatible. In fact, an analogous statement to Lemma 3.22
holds about fragmented maps [39].

Lemma 3.25 acx w∗(M) ∈ eqc (E∗) for every M ∈ eqc (E∗).

Proof By definition, there is a neighborhood ε ⊆ E of zero such that M ⊆ ε◦. Note that ε◦
is convex and weak-star compact by Alaouglu–Bourbaki’s theorem.

Finally note that acx w∗(M) is a weak-star closed subspace of ε◦. ��
Lemma 3.26 Let M ⊆ E∗ be an equicontinuous, weak-star compact subset. Write
T := acxM. Then there exists a surjective j : BC(M)∗ → T such that rT (x) ◦ j =
rBC(M)∗ (rM (x)) for every x ∈ E.

BC(M)∗ T

R

j

rT (x)
γ

where γ := rBC(M)∗ (rM (x)).

Proof Let i : M → BC(M)∗ be the natural embedding. Define M ′ := acx i(M) and
j ′ : M ′ → acx M via:

j ′
(

n∑
m=1

αmi(ϕm)

)
:=

n∑
m=1

αmϕm .

It is easy to see that this function is well-defined and linear. We will now show that it is
uniformly continuous with respect to the standard uniformities of the weak-star topologies.
Let us write

UX (p1, . . . , pt ; ε) := {( f , g) ∈ X × X | ∀1 ≤ k ≤ t : | f (pk)− g(pk)| < ε},
where X ∈ {M ′, acxM}.

Suppose that x1, . . . , xt ∈ E and ε > 0. It is easy to see that:

j ′ (UM ′(rM (x1), . . . , rM (xt ); ε)) ⊆ UM (x1, . . . , xt ; ε).
By definition, j ′ is uniformly continuous.

Now, by Lemma 3.25, T := acx w∗M is compact, and in particular complete.

We can thus extend j ′ to a continuous function j : M ′w∗ → T . By Lemma 2.39,

M ′w∗ = BC(M)∗ .
Since BC(M)∗ is compact, j(BC(M)∗) is closed. Moreover, acxM = j(M ′) ⊆ j(BC(M)∗)

so it is also dense. As a consequence, j is surjective.
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Now suppose that x ∈ E and � = ∑n
m=1 αmi(ϕm) ∈ M ′ ⊆ BC(M)∗ . We thus have:

(rT (x) ◦ j)(�) = rT (x)( j(�)) = rT (x)( j ′(�))

= rT (x)

(
n∑

m=1
αmϕm

)
=

(
n∑

m=1
αmϕm

)
(x)

=
n∑

m=1
αmϕm(x) =

n∑
m=1

αm(rM (x))(ϕm)

=
n∑

m=1
αm(i(ϕm))(rM (x)) =

(
n∑

m=1
αmi(ϕm)

)
(rM (x))

= �(rM (x)) = (rBC(M)∗ (rM (x)))(�).

As a consequence, (rT (x)◦ j)|M ′ = (rBC(M)∗ (rM (x)))|M ′ . Since rT (x)◦ j and rBC(M)∗ (rM (x))
are continuous, and M ′ is dense in BC(M)∗ , we have rT (x) ◦ j = rBC(M)∗ (rM (x)). ��
Lemma 3.27 Let V be a vector space and let B ⊆ P(V ) be a family of subsets of V . Then
the following requirements are enough to conclude that B is a convex bornology:

(1) Singletons belong to B.
(2) If M ∈ B and N ⊆ M then N ∈ B.
(3) Union of two elements of B remains in B.
(4) If M ∈ B and r ∈ R then rM ∈ B.
(5) For every M ∈ B, the absolutely convex hull acxM ∈ B.

Proof First, it is easy to see that ⋃
A∈B

A ⊇
⋃
x∈V

{x} ⊇ V ,

so it only remains to show that sums of elements in B remains in B. Indeed, if A1, A2 ∈ B,
then so are A1 ∪ A2 and 2acx (A1 ∪ A2). Finally, note that:

A1 + A2 ⊆ 2acx (A1 ∪ A2).

��
Definition 3.28 LetB be a bornological class and A ⊆ E is a bounded subset. An equicon-
tinuous, M ⊆ E∗ is said to be co-B-small with respect to A if r(A) ∈ B

M
w∗ , where

r : E → C(M
w∗

) is the restriction map. If this is true for every bounded subset of E , then
we will simply say that M is co-B-small.

Lemma 3.29 Suppose thatB is a bornological class, E a locally convex space, M ∈ eqc (E∗)
and A ⊆ E is bounded. If M is co-B-small with respect to A, then so is M ′ := M ∪ {0}.
Proof If 0 ∈ M then we are done. Otherwise, recall that M is compact and therefore closed.
As a consequence, 0 is isolated in M ′. Choose ϕ0 ∈ M and write N := {0, ϕ0}. We now
define j : M ′ → M and s : M ′ → N by

j(ϕ) :=
{

ϕ ϕ 
= 0

ϕ0 ϕ = 0
, s(ϕ) :=

{
0 ϕ 
= 0

ϕ0 ϕ = 0.
.
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Note that both of these maps are continuous. In virtue of Remark 3.3, BN is the Euclidean
bornology.Namely, every bounded subset belongs toBN . In particular, so does rN (A) ∈ BN .
Thus, rN (A) ◦ s ∈ BM ′ . Moreover, it is easy to see that rM (A) ◦ j ∈ BM ′ . We claim that

rM ′(A) ⊆ rM (A) ◦ j − rN (A) ◦ s.
More specifically, we claim that for every x ∈ A:

rM ′(x) = rM (x) ◦ j − rN (x) ◦ s.
Indeed, suppose that x ∈ A, then for every ϕ ∈ M we have:

(rM ′(x))(ϕ) = ϕ(x) = ( j(ϕ))(x) = ( j(ϕ))(x)− (s(ϕ))(x) = (rM (x) ◦ j − rN (x) ◦ s)(ϕ).

Also:

(rM ′(x))(0) = 0(x) = 0 = ϕ0(x)− ϕ0(x) = ( j(0))(x)− (s(0))(x)

= (rM (x) ◦ j − rN (x) ◦ s)(0).
As a consequence, we have verified the identity for every ϕ ∈ M ′. Since BM ′ is a vector
bornology we conclude that rM ′(A) ∈ BM ′ as required. ��
Lemma 3.30 Let B be a polarly compatible bornological class and let A ⊆ E be bounded.
The family of co-B-small subsets with respect to A of E∗ is a weak-star saturated, convex
bornology.

Denote this bornology as small∗ (B, E, A). We also write

small∗ (B, E) :=
⋂
A⊆E

small∗ (B, E, A)

where A runs over bounded subsets. Clearly, small∗ (B, E) is also a weak-star saturated,
locally convex bornology.

Proof We will prove the requirements of Lemma 3.27:

(1) Saturated: by definition.
Without loss of generality, we will assume that M is weak-star closed for the rest of the
proof.

(2) Singletons belong to small∗ (B, E, A): Consequence of Remark 3.13.
(3) If M ∈ small∗ (B, E, A) and N ⊆ M , then N ∈ small∗ (B, E, A): Consider the inclu-

sionmap i : N → M . Let rM : E → C(M) and rN : E → C(N ) be the restrictionmaps.
By definition, rM (A) ∈ BM . In virtue of the consistency property, rM (A) ◦ i ∈ BN .
Also, note that rN (A) = rM (A) ◦ i . By definition, N ∈ small∗ (B, E, A).

(4) Union of finite elements of small∗ (B, E, A) remains in small∗ (B, E, A): Let M and N
be members of small∗ (B, E, A). We show that M ∪ N ∈ small∗ (B, E, A). Consider
the space P := M × N × {1, 2} and the continuous function T : P → (M ∪ N ) defined
by:

T (ϕ, ψ, n) :=
{

ϕ n = 1

ψ n = 2
.

By definition, rM (A) ∈ BM , rN (A) ∈ BN ; we will check that rM∪N (A) ∈ BM∪N .
Because T is surjective, and in virtue of the consistency property, we can equivalently
show that rM∪N (A) ◦ T ∈ BP .
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In virtue of Lemma 3.29, we can assume without loss of generality that 0 ∈ M and
0 ∈ N . Now, consider the maps θM : P → M and θN : P → N defined as

θM (ϕ, ψ, n) :=
{

ϕ n = 1

0 n = 2

θN (ϕ, ψ, n) :=
{
0 n = 1

ψ n = 2
.

Using the consistency property, we know that (rM (A) ◦ θM )+ (rN (A) ◦ θN ) ∈ BP . We
claim that

rM∪N (A) ◦ T ⊆ (rM (A) ◦ θM )+ (rN (A) ◦ θN ),

completing this part of the proof. Indeed, for every x ∈ A, we have:

rM∪N (x) ◦ T = (rM (x) ◦ θM )+ (rN (x) ◦ θN ).

(5) Suppose that M ∈ small∗ (B, E, A) and α ∈ R, we show that αM ∈ small∗ (B, E, A).
Consider the scalar map Sα : M → αM defined by Sα(ϕ) := αϕ. By definition,
rM (A) ∈ BM . Note that rM (A) = rαM (A)◦Sα . In virtue of consistency, rαM (A) ∈ BαM .

(6) If M ∈ small∗ (B, E, A), then so is its closed absolutely convex hull

T := acx w∗M ∈ small∗ (B, E, A).

Let i : M ↪→ BC(M)∗ be the inclusion map.
By definition, M is equicontinuous, so using Lemma 3.26, consider a continuous surjec-
tion j : BC(M)∗ → T such that for every x ∈ E , rT (x) ◦ j = rBC(M)∗ (rM (x)). In virtue
of its construction, we have:

rT (A) ◦ j = rBC(M)∗ (rM (A)).

Moreover, sinceB is polarly compatible, rBC(M)∗ (rM (A)) ∈ BBC(M)∗ .
Finally, using the consistency property, we know that rT (A) ∈ BT , as required.

��
Recall that every convex bornology B on the dual E∗, induces a locally convex topology

on E [24, Thm. 5:1’1(a)]. This is the polar topology defined by the basis:

{M◦ | M ∈ B}.
Also, if B consists of equicontinuous subsets only, then its polar topology is weaker than the
original topology [24, Thm. 5:1’3]

Definition 3.31 Let B be a polarly compatible bornological class, and (E, τ ) be a locally
convex space.Recall that Lemma3.30 applies in this case so small∗ (B, E) is a convexbornol-
ogy.We define τB to be the polar topology generated by small∗ (B, E). Since small∗ (B, E)

consists of equicontinuous subsets, τB ⊆ τ .

Note that the requirements of Definition 3.21 are necessary to obtain Lemma 3.30, as can
be seen in the following lemma.

Lemma 3.32 Suppose thatB is a bornological class such that for every E and every bounded
A ⊆ E, small∗ (B, E, A) is a saturated locally convex bornology (with respect to the weak-
star topology). ThenB is polarly compatible.
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Proof Suppose that K is compact and A ∈ BK . Write r : C(K ) → C(BC(K )∗) for the
restriction map and i : K → BC(K )∗ for the evaluation map. Also, define K ′ := i(K ). We
need to show that r(A) ∈ BBC(K )∗ . It is easy to see that A = r(A) ◦ i . As a consequence,
r(A) ∈ BK ′ . In other words, r(A) ∈ small∗

(
B,C(K )∗, K ′) and therefore

r(A) ∈ small∗
(
B,C(K )∗, acx w∗K ′).

As a consequence,

r(A) ∈ Bacx w∗K ′ .

However, by Lemma 2.39, acx w∗K ′ = BC(K )∗ , as required. ��
Corollary 3.33 The class [DLP] is polarly compatible.
Proof A consequence of Fact 2.30 and Lemma 3.32. Note that in Fact 2.30, E and F are
interchangeable. ��
Lemma 3.34 For every locally convex space (E, τ ), we have:

τw ⊆ τB ⊆ τ ⊆ τμ

where τw is the weak topology and τμ is the Mackey topology.

Proof First, let us note that

F ⊆ small∗ (B, E) ⊆ E ⊆ C
where F, E and C are the bornologies of finite subsets, equicontinuous subsets, and weak-
star compact absolutely convex subsets, respectively. It is known that their respective polar
topologies are τw, τ and τμ ( [52, p. 131, Cor. 1]). As a consequence:

τw ⊆ τB ⊆ τ ⊆ τμ.

��
Lemma 3.35 Let (E, τ ) be a locally convex space. The topology τB isB-small.

Proof Let A ⊆ E be a bounded subset and M ⊆ E∗ be a weak-star compact, equicontinuous
subset (with respect to τB). We will show that r(A) ∈ BM .

By Lemma 3.34:

τw ⊆ τB ⊆ τμ.

By [52, p. 132, Corollary 2], we conclude that the bounded subsets of τB are the same as
those of τ . Thus, A is bounded with respect to the original topology τ .

Since M is equicontinuous, we can find a neighborhood ε of zero in E such that M ⊆ ε◦.
By definition, we can find a subset N ∈ small∗ (B, E) such that N ◦ ⊆ ε. We therefore have

N ◦◦ ⊇ ε◦ ⊇ M .

By the bipolar theorem (Fact 2.2),

N ◦◦ = acx wN .

By Lemma 3.30, small∗ (B, E) is weak-star saturated and locally convex, so

N ◦◦ = acx w∗N ∈ small∗ (B, E).

In particular, rN◦◦(A) ∈ BN◦◦ , hence rM (A) ∈ BM . ��
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Theorem 3.36 For every lcs (E, τ ), τB is the strongest locally convex, B-small topology
coarser than τ .

Proof First, by Lemma 3.35, τB is indeed a B-small topology. Now, suppose that τB ⊆
σ ⊆ τ is a locally convexB-small topology. By Lemma 3.34, we can write

τw ⊆ τB ⊆ σ ⊆ τ ⊆ τμ.

In virtue of [52, p. 132, Cor. 2], we know that τB and σ have the same bounded sets. Now,
suppose that ε ∈ σ is a neighborhood of zero. We can find a δ ∈ σ such that acx δ ⊆ ε. Note
that because both τB and σ are compatible with the dual E∗, the closure of convex sets (like
acx δ) is equal to the weak closure ( [25, p. 131, Cor. 6]). We will show that acx δ ∈ τB,
proving that σ ⊆ τB.

Since σ isB-small, we know that r(A) ∈ Bδ◦ for every bounded A ⊆ E . Sincewe already
established that the bounded subsets of τB and σ agree, it means that δ◦ ∈ small∗ (B, Eτ ).
Again, by definition, δ◦◦ ∈ τB. Using the Bipolar Theorem (Fact 2.2), we know that
acx δ = δ◦◦, as required. ��

4 Locally convex analogues of reflexive and Asplund Banach spaces

DLP locally convex spaces.The following well-known observation can be derived by results
of [3, Appendix A].

Fact 4.1 Let F × K → R be a bounded separately continuous map where F and K are
compact. Then F, as a family of maps on K , is DLP.

Following the lines of Proposition 3.2 and Definition 3.4, we give

Definition 4.2 Let E be a locally convex space.

• We say that a bounded subset B of E is DLP if B ∈ small ([DLP], E). Explicitly, B is
DLP if it is DLP as a family of functions over every M ∈ eqc (E∗).

• E is said to be DLP, and write E ∈ (DLP) if E is [DLP]-small. In other words,
E ∈ (DLP) if and only if every bounded subset of E is DLP.

The following is a direct consequence of Theorem 3.17.

Theorem 4.3 The class (DLP) is closed under taking:

(1) subspaces
(2) bound covering maps
(3) products
(4) direct sums
(5) inverse limits.

Moreover, if F is a large, dense subspace of the locally convex space E, and F ∈ (DLP),
then E ∈ (DLP). In particular, if V is a normed DLP space, then so is its completion.

Proposition 4.4 Every relatively weakly compact subset B in a lcs E is DLP.

Proof Let B be weakly compact in a lcs E and M ∈ eqc (E∗). Then the natural map
w : B × M → R is separately continuous. Observe that w is a bounded map. Indeed, there
exists a neighborhood O of zero in E such that |u(x)| < 1 for every x ∈ O and u ∈ M .
Since B is bounded, there exists c ∈ R such that B ⊂ cO . Then |u(x)| < c for every x ∈ B
and u ∈ M . Now, by Fact 4.1, we obtain that B is DLP on M . ��
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The converse is true for Banach spaces. Namely, a bounded subset B of a Banach space
V is DLP iff B is relatively weakly compact (see [3, Thm. A5]). As a consequence, a Banach
space V is reflexive iff it is DLP.

Fact 4.5 [52, Ch. IV, 5.5]A locally convex space is semi-reflexive if and only if every bounded
subset is relatively weakly compact.

Recall that a lcs E is said to be boundedly-complete (or, quasi-complete, [25]) if every
closed bounded subset in E is complete. An equivalent condition is that every bounded
Cauchy net converges. Every boundedly-complete lcs is sequentially complete and every
sequentially complete lcs is locally complete (Definition 2.1).Note that everyweakly compact
subset in a lcs is complete, [21, p. 90]. This implies (by Fact 4.5) that every semi-reflexive
space is boundedly-complete. In Theorem 4.6 we make this more precise.

Theorem 4.6 E is semi-reflexive if and only if E is boundedly-complete and DLP.

Proof First suppose that E is semi-reflexive. Then our claim is a consequence of Proposition
4.4 and Fact 4.5. The converse is a conclusion of Proposition 4.7 below. ��
Proposition 4.7 (version of Grothendieck’s result [29, Thm. 17.12])

Let E be a boundedly-complete lcs. Then the following are equivalent for a subset B ⊆ E:

(1) B is bounded and DLP.
(2) B is relatively weakly compact.
(3) The closed convex hull C := co(B) is weakly compact.

Proof (3) ⇒ (2) Obvious.
(2) ⇒ (1) Let B be a relatively weakly compact subset in E . Then it is well-known that

B is bounded. Also B is DLP by Proposition 4.4.
(1) ⇒ (3) Let B ⊆ E be a bounded DLP subset. We have to show that C := co(B) is

weakly compact. First, C is complete being bounded and closed in a boundedly-complete
space E .

Also, by Lemma 3.5, C is DLP as well. By [52, II, 5.4, Corollary 2], there exists an
embedding T : E ↪→ V where V := ∏

λ∈� Vλ and {Vλ}λ∈� are Banach spaces.
By Fact 2.6, it is enough to show that T (C) is weakly compact.
The subset T (C) is complete in T (E) and also in V , because T is a uniform embedding

(as a linear embedding). Therefore, T (C) is closed in V . Moreover, T (C) is convex. So, it
is even weakly closed in V ( [25, p. 131, Corollary 6]).

As a consequence, it is enough to show that T (C) is relatively weakly compact.
By Theorem 4.3, the projection Cλ := πλ(T (C)) ⊆ Vλ is DLP for every λ ∈ �. Since

Cλ ⊆ Vλ is a bounded DLP subset in a Banach space Vλ, we can apply [3, Thm. A.5] to
conclude that it is weakly relatively compact.

Nowobserve that T (C) ⊆ Ĉ := ∏
λ∈� Cλ.By [52, p. 137, Thm4.3], theweak topology of

the product is the product of the weak topologies. Using Tychonoff’s Theorem, we conclude
that Ĉ is also weakly compact in V = ∏

λ∈� Vλ. Finally, T (C) ⊆ Ĉ is relatively weakly
compact. ��

Proposition 4.7 implies that in the boundedly-complete space E , the closed convex hull
of every weakly compact subset is weakly compact (generalized Krein-Smulian theorem).
This need not be true in arbitrary lcs if E is not boundedly-complete.

For example, let E be the normed subspace of l2 which consists of all sequences of finite
support. Then the set

{ 1
n en

}
n∈N ∪ {0l2} is compact but the closure of its convex hull is not
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compact (and even not complete). Note that E is DLP because it is a subspace of l2. By
Theorem 4.3, the DLP is hereditary. Since E is not semi-reflexive, this example shows that
boundedly-completeness is essential also in Theorem 4.6.

Moreover, in this space every bounded neighborhood of the origin is DLP but not relatively
weakly compact.

Remark 4.8 We mention some interesting subclasses in DLP. Among others:

(1) Semi-reflexive lcs (Theorem 4.6);
(2) Quasi-Montel lcs (every bounded subset is uniformly precompact). Schwartz and nuclear

lcs are quasi-Montel.
Important examples in Analysis: the spaces C∞(�) and D(�) (for an open subset � in
R
n). Also, the space of analytic functions H(�) over a domain;

(3) For every locally convex space E , the lcs (E, w)with its weak topology is (DLP). Indeed,
(E, w) is a subspace of R

E ;
(4) Every space Cp(X), in its pointwise topology (for every topological space X ), is (DLP).

Indeed, Cp(X) is a subspace of R
X .

Namioka–Phelps (NP) locally convex spaces. Recall the following well-known character-
ization of Asplund Banach spaces.

Fact 4.9 (Namioka–Phelps [41]) A Banach space (V , || · ||) is Asplund (the dual of every
separable (Banach) subspace is separable) iff very bounded weakly-star compact subset
K ⊂ E∗ is (weak∗,norm)-fragmented.

The second assertion can be reformulated as follows: the unit ball in E is a fragmented
family of functions on the unit ball of the dual space.

The following locally convex version of Asplund spaces was introduced in [33].

Definition 4.10 [33] A locally convex space E is said to be a Namioka–Phelps (NP) space
if every K ∈ eqc (E∗) is (weak∗,strong)-fragmented.

Definition 4.11 We say that a bounded subset A of a lcs E is an Asplund set in E if A is
fragmented on every K ∈ eqc (E∗).

The first assertion of the following lemma appears also in [17, 39].

Lemma 4.12

(1) Let K be a compact space and F ⊂ C(K ) be a norm bounded subset. If F is DLP on K
then F is a fragmented family on K .

(2) Every DLP (e.g., relatively weakly compact) subset B in a lcs E is Asplund and hence
(DLP) ⊂ (NP).

Proof It is easy to see that (2) follows from (1). To show (1), note that every (relatively)
weakly compact subset in a lcs is Asplund being fragmented on every K ∈ eqc (E∗). This
follows using Namioka’ joint continuity theorem (as in [33, Prop. 3.5]). On the other hand, a
bounded family of continuous functions on a compact space K has DLP iff its natural image
into the Banach space C(K ) is relatively weakly compact. ��

Like in Definition 4.2 (DLP), both of these definitions can be reformulated in terms of a
bornological class [NP]. We can also formulate the following theorem as a consequence of
Theorem 3.17.
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Theorem 4.13 The class (NP) is closed under taking:

(1) subspaces
(2) bound covering maps
(3) products
(4) direct sums
(5) inverse limits.

Moreover, if F is a large, dense subspace of the locally convex space E, and F ∈ (NP), then
E ∈ (NP).

Remark 4.14 Recall that a bounded subset A in a Banach space V is said to be anAsplund sub-
set (Fabian [9, p. 22]), or, a Stegall subset in terms of Bourgin [5, p. 121] if the pseudometric
space (V ∗, ρC ) is separable for every countable C ⊂ A, where

ρC (φ, ψ) := sup
x∈C

|φ(x)− ψ(x)|.

Equivalently, (BV ∗ , ρC ) is separable.
This definition is compatible with Definition 4.11 as it follows from Lemma 2.17.

Lemma 4.15 The following conditions are equivalent:

(1) E is (NP);
(2) every (countable) bounded B ⊂ E subset is an Asplund subset in E.

Proof E is (NP) means that every subset K ∈ eqc (E∗) is (weak*, strong)-fragmented. That
is, for every subset A ⊆ K , ε > 0 and bounded set B ⊆ V , there exists a weak-star open set
O ⊆ E∗ such that A ∩ O is nonempty and (ε, B)-small. This is equivalent to (A ∩ O)(x)
being ε-small for every x ∈ B. This just means that B is a fragmented family of functions
on K .

By Lemma 2.17, it is equivalent that for every countable subset C of B is fragmented on
K . ��

Note that (NP) lcs has several remarkable properties. For the continuity of dual group
actions, see [33] and for the fixed point theorems, [16] and [56].

Examples 4.16 [33]

(1) A Banach space is (NP) iff it is Asplund.
(2) Every Frechet differentiable lcs is (NP).
(3) If the dual V ∗ is a linear subspace in a product of separable lcs, then V is (NP).

5 Locally convex analogue of Rosenthal Banach spaces

Definition 5.1 We say that a bounded subset B of a lcs E is tame in E if one of the following
equivalent conditions (by Lemma 2.24) is satisfied:

(i) B is tame (Definition 2.21) over every K ∈ eqc (E∗). In other words, B ∈ small ([T], E).
(ii) B is eventually fragmented over every K ∈ eqc (E∗).

Every fragmented family is eventually fragmented. Therefore, every Asplund subset in E
is tame.

In the spirit of Definition 3.18, we will say that a bounded subset is Mackey tame if it is
tame over every weak-star compact (not necessarily equicontinuous) subset K ⊆ E∗.
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Remark 5.2 By Lemma 3.5 and Proposition 3.2, the family of tame (Asplund, DLP) subsets
in a given lcs is a convex bornology in the sense of [24] and a saturated bornology in the
sense of [25, p. 153].

By Lemma 2.27, a Banach space V is Rosenthal iff every bounded subset F ⊂ V is tame.
Motivated by this reformulation, we introduce here the following locally convex analogue of
Rosenthal Banach spaces.

Definition 5.3 A locally convex space E is said to be tame if every bounded subset B of E is
tame. In other words, E is tame if and only if E is [T]-small. In this case we write E ∈ (T).

Similarly, a space is Mackey tame if every bounded subset is Mackey tame. In this case
we will write E ∈ (mT).

As in Lemma 4.15, we may assume without loss of generality that B is countable. We
have the inclusions (note that s. stands for “subsets"):
{weakly compact s.} ⊂ (DLP s.) ⊂ {Asplund s.} ⊂ {tame s.} ⊂ {bounded s.}
{semi-reflexive lcs} ⊂ (DLP) ⊂ (NP) ⊂ (T) ⊂ {lcs}
Proposition 5.4

(1) For Mackey spaces (e.g., barreled or metrizable), Mackey tameness is equivalent to
tameness.

(2) A Banach space is a tame lcs iff it is a Rosenthal Banach space.

Proof Corollary 3.20 and Lemma 2.27 respectively. ��
The following is a direct consequence of Theorem 3.17.

Theorem 5.5 The class (T) is closed under taking:

(1) subspaces
(2) bound covering maps
(3) products
(4) direct sums
(5) inverse limits.

Moreover, if F is a large, dense subspace of the locally convex space E, and F ∈ (T), then
E ∈ (T). In particular, if V is a normed tame space, then so is its completion.

Question 5.6 Is it true that the completion of a DLP/NP/tame lcs is always DLP/NP/tame?

A nonempty class of lcs is said to be a variety [7] if it is closed under the operations of
taking subspaces, quotients, arbitrary products and isomorphisms. In particular, it is closed
also under the inverse limits. For every subclass K of locally convex spaces, the intersection
of all varieties containing K is a variety generated by K . Notation: V(K ).

Proposition 5.7 The variety V(R) generated by the class of all Banach tame (i.e., Rosenthal)
spaces is properly contained in (T). In particular, not every tame lcs can be embedded into
a product of tame Banach spaces. Similar assertion is true for (NP).

Proof Use results of this section and also the following facts:

(a) The classes (DLP), (NP) and (T) are not closed under quotients. As it was mentioned
in [52, IV, Ex. 20], there exists a Frechet Montel (hence, (DLP)) space E and a closed
subspace M such that the quotient space E/M is the Banach space l1 (which, of course,
is not tame).
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(b) The class R of all Banach tame (i.e., Rosenthal) spaces is closed under finite products
and quotients, Hence by [7, Thm. 1.4], the variety V(R) of all lcs generated by R is just
the class of all subspaces in products of Rosenthal Banach spaces. This implies that the
Montel Frechet space E from (a), which is (DLP) and hence tame, cannot be embedded
into a product of tame Banach spaces because a quotient of E is l1 (and variety is closed
under quotients).

��
Fact 5.8 [44, Main Theorem] Let K be a compact space. The following are equivalent:

(1) l1 cannot be embedded in C(K ).
(2) The dual of every separable Banach subspace of C(K ) is separable.
(3) K is scattered.

In other words, C(K ) as a Banach space is Rosenthal, iff it is Asplund iff K is scattered.

This result motivates a generalization to the locally convex space Ck(X) with the compact
open topology when X is not compact. In [12, Lemma 6.3], Gabriyelyan–Kakol–Kubiś–
Marciszewski gave a natural generalization showing that the same statement remains valid
for the lcs Ck(X) where X is a Tychonoff space X which is not necessarily compact, if we
require that every compact subset of X is scattered. We give now another generalization of
Fact 5.8 involving tame and NP lcs.

Proposition 5.9 For every Tychonoff topological space X the following are equivalent:

(1) Ck(X) is a tame lcs.
(2) Ck(X) is (NP).
(3) Every compact subset of X is scattered.

Proof For every compact K ⊆ X , write EK := C(K ) for the Banach space of continuous
functions over K . Let D be the directed family of all compact subsets in X . By [25, p. 70,
Proposition 3], E = Ck(X) can be embedded in the inverse limit lim←−K∈D EK . To make
notation easier, we will assume without loss of generality that E ⊆ lim←−K∈D EK .

(3) ⇒ (2) : Suppose that every compact K ⊆ X is scattered. We will show that Ck(X)

is (NP). Applying Fact 5.8, we know that EK is (NP) if and only if K is scattered. Using
Theorem 5.5, we conclude that lim←−K∈D EK is also (NP), and therefore so is E = Ck(X) ⊆
lim←−K∈D EK .

(2) ⇒ (1) : Obvious.
(1) ⇒ (3) :We will show that if E is tame, then every compact subset of X is scattered.

Let K ⊆ X be a compact subset. Consider the restriction map r : Ck(X) → C(K ). It is easy
to see that r is continuous. We claim that it is bound covering. Then, applying Theorem 5.5
we will conclude that C(K ) is also tame. Finally, we will use Fact 5.8 to show that K is
indeed scattered.

Now, to see that r is bound covering, consider the Stone-C̆ech compactification βX .
Suppose that f ∈ C(K ). Since K is compact, f is bounded. Also, K is closed in βX as a

compact subset in a compact Hausdorff space. We can therefore apply the Tietze extension
theorem to find f̂ ∈ C(βX) such that f̂|K = f and

sup
x∈βX

| f̂ (x)| = sup
x∈K

| f (x)|.

Let us write e : C(K ) → Ck(X) for the map sending every f ∈ C(K ) to f̂|X . Clearly,
r(e( f )) = f and therefore r(e(B)) = B for every B ⊆ C(K ).
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Moreover, for every f ∈ C(K ) and compact K ′ ⊆ X , we have

sup
x∈K ′

|(e( f ))(x)| ≤ sup
x∈βX

| f̂ (x)| = ‖ f ‖.

As a consequence, if B ⊆ C(K ) is bounded by M > 0, then so is e(B). By definition, r is
bound covering. ��
Remark 5.10 A Banach space V is Asplund iff the dual of every separable subspace is sepa-
rable. In contrast, there exists a separable NP space E with nonseparable dual (Remark 5.11
below). However, it is unclear for us if a lcs is NP iff the dual of every separable Banach
subspace is separable. This question is interesting also in order to compare our Proposition
5.9 and [12, Lemma 6.3]. The “only if part” is clear because the class (NP) is closed under
subspaces.

Remark 5.11 Let V be a (NP) lcs. In contrast to the case of Banach spaces (recall that (NP)

Banach spaces are exactly Asplund Banach spaces), the dual of a separable linear subspace
E of V is not necessarily separable. Indeed, consider the product space V = R

c. Then R
c

is a reflexive lcs (in particular, (NP)). R
c is separable (because of the Pondiczery Theorem

[55, Thm. 16.4.c]).
However, its dual is not separable. Indeed, by [52], its dual V ∗ in its weak-star topology

can be identified with the locally convex direct sum ⊕i∈IRi of continuum many copies of
R. It is easy to see that V ∗ in its weak-star topology is not separable. Therefore, V ∗ in its
strong topology cannot be separable.

6 Generalized l1-sequences

Definition 6.1 Let E be a locally convex space. A bounded sequence {xn}n∈N ⊆ E is said to
be equivalent to the l1-basis (or simply an l1-sequence) if there exist: a continuous seminorm
ρ on E and δ > 0, such that for every c1, . . . , cn ∈ R

δ

n∑
i=1
|ci | ≤ ρ

(
n∑

i=1
ci xi

)
.

Generalizing Definition 1.4, we say that a subset A in a locally convex space E satisfies
(R1) if it has no bounded l1-sequences.

The space E satisfies (R1) iff every bounded subset satisfies (R1). If there is no embedding
of l1 into E , then we will say that E satisfies (R1).

Lemma 6.2 Let (X , ‖·‖) be a Banach space and let Y be a locally convex space. Suppose
that ϕ : X → Y is a continuous linear map. Then ϕ is an embedding if and only if there is a
continuous seminorm ρ on Y and δ > 0 such that ρ(ϕ(x)) ≥ δ‖x‖ for every x ∈ X.

Proof Suppose that this condition is indeed satisfied. Clearly, ϕ is injective, because for every
0 
= x ∈ X we have ρ(ϕ(x)) ≥ δ‖x‖ > 0. Hence, ϕ(x) 
= 0.

Since ϕ is linear, it is enough to show that ϕ(BX ) is a neighborhood of 0 in ϕ(X). We
claim that

ϕ(X) ∩ Bρ(δ) ⊆ ϕ(BX ).

Indeed, if y ∈ ϕ(X) ∩ Bρ(δ) then there is x ∈ X such that ϕ(x) = y. Note that

δ ≥ ρ(y) = ρ(ϕ(x)) ≥ δ‖x‖,
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and therefore ‖x‖ ≤ 1. By definition, x ∈ BX and y ∈ ϕ(BX ).
Conversely, suppose that ϕ is an embedding. By definition, ϕ(BX ) is a neighborhood of

0 in ϕ(X). So there are continuous seminorms ρ1, . . . , ρn on Y and δ′ > 0 such that

ϕ(X) ∩ Bρ1,...,ρn (δ
′) ⊆ ϕ(BX ),

where

Bρ1,...,ρn (δ
′) := {y ∈ Y | ∀1 ≤ i ≤ n : ρi (y) ≤ δ′}.

First, define ρ := max1≤i≤n ρi which is clearly another continuous seminorm on Y , and note
that

Bρ1,...,ρn (δ
′) = Bρ(δ′).

Next, suppose that x ∈ X . If x = 0 then our condition is clearly satisfied.Otherwise, ‖x‖ > 0.
Write x̃ := 2

‖x‖ x and note that ‖x̃‖ = 2 > 1. Thus, x̃ /∈ BX .
We claim that ϕ(̃x) /∈ Bρ(δ′) as a consequence. Indeed, suppose by contradiction that

ϕ(̃x) ∈ Bρ(δ′). Thus,

ϕ(̃x) ∈ Bρ(δ′) ∩ ϕ(X) ⊆ ϕ(BX ).

By definition, there exists some y ∈ BX such that ϕ(y) = ϕ(̃x). However, ϕ is injective so
x̃ = y ∈ BX ,which is impossible since x̃ /∈ BX . This contradiction shows thatϕ(̃x) /∈ Bρ(δ′).
By definition, ρ(ϕ(̃x)) ≥ δ′ and therefore

ρ

(
ϕ

(
2

‖x‖ x
))

= 2

‖x‖ρ(ϕ(x)) ≥ δ′

⇓
ρ(ϕ(x)) ≥ ‖x‖δ′

2
.

Finally, define δ := δ′
2 . ��

The following is a direct consequence of Lemma 6.2.

Lemma 6.3 (R1) ⇒ (R1). More precisely, let ϕ : l1 → X be an embedding into a lcs X.
Then {ϕ(en)}n∈N ⊆ X is an l1-sequence.

Example 6.4 The converse to Lemma 6.3 need not be true, (R1) � (R1).

Proof Indeed, consider the normed subspace X of l1 consisting of finitely supported
sequences:

X := {
α ∈ l1 | ∃n0 ∈ N ∀n ≥ n0 : αn = 0

}
.

It is easy to see that the standard basis {en} ⊆ X remains an l1-sequence. However, there is
no embedding ϕ : l1 → X .

By contradiction, suppose that ϕ : l1 → X is an embedding. By dim X we mean the
Hamel dimension of X . It is easy to see that dim X = ℵ0 while dim Y = dim l1 = ℵ, a
contradiction. ��
Lemma 6.5 Suppose that X and Y are locally convex spaces and ϕ : X → Y is a continuous
linear map. If A ⊆ X is bounded and satisfies (R1), then so does ϕ(A).
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Proof By contradiction, suppose that ϕ(A) ⊆ Y does not satisfy (R1). By definition, there
exist: a sequence {yn}n∈N ⊆ ϕ(A) ⊆ Y , a continuous seminorm ρ on Y and δ > 0 such that
for every c1, . . . , cn ∈ R

δ

n∑
i=1
|ci | ≤ ρ

(
n∑

i=1
ci yi

)
.

Since ϕ is continuous and linear, there is a continuous seminorm σ on X such that

ρ(ϕ(x)) ≤ σ(x)

for every x ∈ X . Choose xn ∈ A ⊆ X such that ϕ(xn) = yn . The sequence {xn} is bounded
because A is bounded. We claim that {xn} ⊆ A is an l1-sequence with respect to σ and δ,
which contradicts A satisfying (R1). Indeed, for every c1, . . . , cn ∈ R

σ

(
n∑

i=1
ci xi

)
≥ ρ

(
ϕ

(
n∑

i=1
ci xi

))
= ρ

(
n∑

i=1
ciϕ(xi )

)

= ρ

(
n∑

i=1
ci yi

)
≥ δ

n∑
i=1
|ci |.

��
The following lemma can be extrapolated from [49, Propositions 3.1 and 3.3].

Lemma 6.6 Let X be a locally complete lcs. If {xn}n∈N ⊆ X is a bounded l1-sequence, then
there is a linear topological embedding ϕ : l1 → X such that for every n ∈ N, ϕ(en) = xn.

Moreover, ifρ is a continuous seminormon X and δ > 0make {xn}n∈N into an l1-sequence,
then:

ρ(ϕ(α)) ≥ δ‖α‖
for every α ∈ l1.

Proof Let {xn}n∈N be equivalent to the l1-basis. Define ϕ : l1 → X by ϕ(α) := ∑
n∈N αnxn,

where α = (αn)n∈N ∈ l1. Before we continue, we verify the convergence of this sum.
Write B for the smallest closed disc containing {xn}n∈N. Since {xn}n∈N is bounded, so is
B. By our assumption, X is locally complete. Hence, (XB , qB) is complete. Moreover,∑N

n=0 αnxn ∈ XB , so we can use the Cauchy criterion for convergence. Let ε > 0. By the
definition of l1, there exists some n0 ∈ N such that

∑∞
n=n0 |αn | ≤ ε. Note that for every

n ∈ N, qB(xn) ≤ 1 because xn ∈ 1 · B. Thus, for every m ≥ n0:

qB

(
m∑

n=n0
αnxn

)
≤

m∑
n=n0

|αn |qB(xn) ≤
m∑

n=n0
|αn | ≤

∞∑
n=n0

|αn | ≤ ε.

We have therefore shown that
∑

n∈N αnxn
qB−→ x ∈ XB . Now, apply Fact 2.9 to conclude

that limn∈N
∑

n∈N αnxn = x ∈ X with respect to the original topology of X .
Note that ϕ is clearly linear. Next we show that ϕ is continuous. Let ρ be a continuous

seminorm on X , ε > 0 and M ∈ R be a bound for {ρ(xn)}n∈N. A similar calculation shows
that

ρ(ϕ(α)) ≤ M
∑
n∈N

|αn | = M‖α‖ ≤ M
ε

M
= ε
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for every α ∈ ε
M Bl1 . Note that for every α ∈ l1 such that αn = 0 for every n > n0, we have

ρ(ϕ(α)) = ρ

(
n0∑
i=1

αi xi

)
≥ δ

n0∑
i=1
|αi | = δ‖α‖.

Since the finitely supported elements in l1 are dense, and by virtue of the continuity of ϕ, this
inequality also applies for every α ∈ l1. Applying Lemma 6.2, we conclude that ϕ is indeed
an embedding. ��

The following is a direct consequence of Lemma 6.3 and Lemma 6.6.

Lemma 6.7 For locally complete lcs, the conditions (R1) and (R1) are equivalent.

Recall that we gave definitions of ρM and (R∗1) in Definition 2.33.

Lemma 6.8 Let E be a locally convex space and let M ⊆ E∗ be an equicontinuous, weak-star
compact, disked subset. If M does not satisfy (R∗1), then there exist an embedding T : V → E
where V is a dense normed subspace of l1 and δ > 0 such that

δBV ∗ ⊆ T ∗(M).

Proof Let Ê be the completion of E . By definition, there is a bounded sequence {xn}n∈N ⊆ E
which is equivalent to the usual l1-basis with respect to ρM . By Lemma 6.6, there exists an
embedding T ′ : l1 → Ê with respect to ρM such that T ′(em) = xm . Moreover, there exists
δ > 0 such that

∀α ∈ l1 : ρM (T (α)) ≥ δ‖α‖1.
Write V := (T ′)−1(E) and T := T ′|V .

By contradiction, suppose that δBV ∗ � T ∗(M). In this case, there exists
ϕ ∈ δBV ∗\T ∗(M). Recall that by Banach–Grothendieck theorem the dual of (V ∗, w∗)
is simply V .

Also, T ∗(M) is clearly absolutely convex and closed. Using Fact 2.38, we can find α ∈ V
such that

sup
θ∈M

|(T ∗(θ))(α)| < |ϕ(α)|.

Thus we get:

δ‖α‖1 ≤ρM (T (α)) = sup
θ∈M

|θ(T (α))|
= sup

θ∈M
|(T ∗(θ))(α)| < |ϕ(α)|

≤‖ϕ‖1‖α‖1 ≤ δ‖α‖1,
a contradiction. ��

7 Rosenthal type properties

For the definitions of (R1) and (R1), see Definitions 1.4 and 6.1.

Theorem 7.1 (T) = (R1).
More precisely, a bounded subset B ⊆ X of a lcs is tame if and only if B satisfies (R1).
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Proof First suppose that B ⊆ X does not satisfy (R1). We will show that B is not tame.
Without loss of generality, we can assume that B = {xn}n∈N ⊆ X is a bounded sequence
equivalent to the l1-basis. Write X̂ for the completion of X . It is easy to see that {xn}n∈N
remains an l1-sequence as a subset of X̂ (directly applying Definition 6.1 and extending the
seminorm to X̂ ). ByLemma6.6, there is an embeddingϕ : l1 → X̂ such thatϕ(en) = xn ∈ X .
Write B ′ := {en}n∈N ⊆ l1. Clearly, B ′ is not tame in l1. Since ϕ is an embedding, B = ϕ(B ′)
is also not tame in X̂ . However, by Theorem 5.5, this implies that B is not tame in X , which
is a contradiction.

Conversely, suppose that B ⊆ X satisfies (R1), we will show that B is tame. Let M ∈
eqc (X∗) and let π : X → V and � : M → V ∗ be as in Lemma 2.35. Since � is weak-
star continuous, �(M) is weak-star compact and therefore equicontinuous by the Banach–
Steinhaus Theorem (for the Banach space V ). Since B satisfies (R1) and considering Lemma
6.5, so does π(B). By Lemma 2.26, π(B) is tame over �(M). Applying Lemma 3.6, we
conclude that B is tame over M = π∗(�(M)). ��

The following corollary of Theorem 7.1 gives a generalization of Rosenthals’s dichotomy
to all locally convex spaces in terms of the tameness.

Theorem 7.2 [Tame dichotomy in lcs] Let E be a locally convex space. Then every bounded
subset in E is either tame, or has a subsequence equivalent to the l1-sequence.

Definition 7.3 A subset A ⊆ X of a lcs is said to be Rosenthal (write A ∈ (Ros)) if every
bounded sequence in A has a weak Cauchy subsequence. We say that X is Rosenthal (X ∈
(Ros)) if every bounded subset of X is Rosenthal.

Proposition 7.4 (Ros) 	⇒ (mT).
More precisely, every bounded Rosenthal subset B ⊆ X (e.g., every bounded weak Cauchy
subsequence) in a lcs X is Mackey tame.

Proof Suppose that B ⊆ X is a bounded Rosenthal set and let M ⊆ X∗ be weak-star
compact. We claim that B is tame over M . Assuming the contrary, suppose that {xn}n∈N ⊆ B
is independent over M . We can assume without loss of generality that {xn}n∈N is both weak-
Cauchy and independent over M . Let a < b ∈ R be the bounds of independence of {xn}n∈N
over M . Since M is weak-star compact, we can use Fact 2.23 to find ϕ ∈ M such that:

ϕ(xn) ∈
{

(b,∞) n ∈ 2N

(−∞, a) otherwise
.

This implies that {ϕ(xn)}n∈N is not a Cauchy sequence, which is a contradiction. ��
Theorem 7.5 In every locally convex space X, the following holds:

(Ros) 	⇒ (mT) 	⇒ (T) = (R1) 	⇒ (R1).

Proof Combine Theorem 7.1, Proposition 7.4 and Lemma 6.3. ��
Theorem 7.6 Let X be a locally convex space whose bounded subsets are metrizable. Then
(Ros) = (T).

More precisely, If B ⊆ X is a bounded subset then it is Rosenthal if and only if it is tame.

Proof We already established in Proposition 7.4 that every Rosenthal bounded subset is tame.
We will see the converse applied in this setting. Let B ⊆ X be tame, we will show that it
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is also Rosenthal. Without loss of generality, we can assume that B = {xn}n∈N ⊆ X is a
bounded sequence. Note that acx B is also bounded, and therefore metrizable.

Let {εm ∩ acx B}m∈N be a descending basis of disks for the neighborhoods of 0 ∈ acx B,
and let {ε◦m}m∈N be the corresponding polars. Every such polar is equicontinuous by definition
and also weak-star compact by the Banach–Alaoglu Theorem. Since B is tame, it must be
tame over each ε◦m .

Define n(0)
k := k. Using induction, we construct subsequences

{
n(m)
k

}
k∈N ⊆ N such that

(1)
{
n(m+1)
k

}
k∈N ⊆

{
n(m)
k

}
k∈N.

(2)
{
ϕ

(
x
n(m)
k

)}
k∈N

converges for every ϕ ∈ ε◦m .

The induction step is done by applying Lemma 2.24 on
{
n(m)
k

}
k∈N to find a subsequence{

n(m+1)
k

}
k∈N that converges on ε◦m+1. Now, defining nk := n(k)

k we get that {ϕ(xnk )}k∈N
converges for every ϕ ∈ ⋃

m∈N ε◦m .
We will now show that {xnk }k∈N is a weak Cauchy sequence. Let ϕ ∈ X∗ and let ε be a

neighborhood of zero such that |ϕ(ε)| ≤ 1. By the construction of {εm}m∈N, there is some
m0 ∈ N such that εm0 ∩ acx B ⊆ ε ∩ acx B.

Using Lemma 2.37, we can find ϕ̂ ∈ ε◦m0
such that ϕ|acx B = ϕ̂|acx B . However,

{xnk }k∈N ⊆ acx B and therefore {ϕ(xnk )}k∈N = {ϕ̂(xnk )}k∈N converges. By definition,
{xnk }k∈N is weak Cauchy. ��
Theorem 7.7 If all bounded sets of a lcs X are metrizable, then

(Ros) = (mT) = (T) = (R1) 	⇒ (R1)

and the following dichotomy holds: any bounded sequence in X either has a weak Cauchy
subsequence or an l1-subsequence.

Proof Combine Theorem 7.5 and Theorem 7.6. ��
Theorem 7.7 and Lemma 6.7 directly imply a well-known result of Ruess (Fact 1.8) which

extends Rosenthal’s non-containtment of l1-criteria to a quite large class of lcs.

Theorem 7.8 There exists a strongly tame complete (even reflexive) lcs which:

(i) is not a Rosenthal lcs;
(ii) does not contain any l1-subsequence;
(iii) contains a dense, Rosenthal subspace.

As a corollary: Rosenthal’s dichotomy does not hold for such locally convex spaces.

Proof Write C := {0, 1}N and consider the space X := R
C with the product topology. It is

known that X is complete and reflexive. By Theorem 5.5, X is tame. Also, every reflexive
space is barreled [25, Proposition 11.4.2] so by Proposition 5.4, X is strongly tame. We will
see now that it is not Rosenthal. Consider the n-th projection πn : C → {0, 1}. We claim that
{πn}n∈N ⊆ X has noweakCauchy subsequence. Indeed, for every subsequence {nk}k∈N ⊆ N

define α ∈ C whose n-th entry is

αn :=
{
1 n = nk, k ∈ 2N

0 else
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and let eα : X → R be the evaluation functional at α. It is easy to see that {eα(πnk )}k∈N does
not converge and therefore {πnk }k∈N is not weak Cauchy.

Finally, consider the dense subspace Y ⊆ X of functions with finite support

Y := { f ∈ R
C | |Supp( f )| < ℵ0} ⊆ R

C .

We will show that Y is a Rosenthal space. Let {xn}n∈N ⊆ Y be a bounded sequence. By
definition,

S :=
⋃
n∈N

Supp(xn) ⊆ C

is countable so we can enumerate it as S = {αm}m∈N. Using induction and a diagonal argu-
ment, it is easy to find a subsequence {nk}k∈N ⊆ N such that {xnk }k∈N converges pointwise
on S. Moreover, for every α ∈ C \ S, k ∈ N we have xnk (α) = 0. Therefore, {xnk } converges
pointwise on C and is therefore weak-Cauchy. ��
Remark 7.9 Theorem 7.2 can be considered as a locally convex version of Rosenthal’s classi-
cal dichotomy (in Banach spaces). As shown in Theorem 7.6, “Tame dichotomy" of Theorem
7.2 implies that Rosenthal’s classical dichotomy from Banach spaces can be extended to a
much larger class of lcs with metrizable bounded subsets. This strengthens a well-known
result of Ruess [49] (Fact 1.8). On the other hand, Rosenthal’s dichotomy is not true for
general lcs as Theorem 7.8 demonstrates.

Strongest tame image of a lcs. In this subsection, we apply the results of Sect. 3.2 to the
bornological class of tame functions. By 3.23, this is indeed a polarly compatible bornology.

Definition 7.10 An equicontinuous subset M ⊆ E∗ is said to be co-tame if
M ∈ small∗ ([T], E). Explicitly, M is co-tame if and only if every bounded A ⊆ E is
tame over M . Similarly can be defined co-Asplund and co-DLP subsets.

The following remark provides a useful class of co-Asplund (hence, co-tame) subsets.

Remark 7.11 Let E be a lcs and K ∈ eqc (E∗). Suppose that K is separable (or, more
generally, uniformly Lindelof [33]) in the standard strong topology on E∗. Then K is (weak∗,
strong)-fragmented by [33, Prop. 3.10]. It follows that every bounded subset B ⊂ E is
fragmented on K . Hence K is co-Asplund (so, also co-tame). This explains also assertion
(3) in Examples 4.16.

Lemma 7.12 The family of all co-tame subsets small∗ ([T], E) is a locally convex bornology.
In particular, the weak-star closed absolutely convex hull of a co-tame subset is co-tame. It
is also true relative to a given bounded subset B. This means that if B is tame over M, it is
also tame over acx w∗(M).

Proof Application of Lemma 3.30 in light of [T] being polarly compatible. ��
Theorem 7.13 Let (E, τ ) be a locally convex space and small∗ ([T], E) be the locally convex
bornology of co-tame subsets. Then the polar topology τtame is the strongest tame locally
convex topology, coarser than τ , and

τw ⊆ τtame ⊆ τ ⊆ τμ

where τμ is the Mackey topology.
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Proof Theorem 3.36 and Lemma 3.34. ��
Similar results are valid also for the class (NP).

Problem 7.14 Study τtame and τN P for remarkable (e.g., classical) locally convex (or,
Banach) spaces (E, τ ).

8 Free locally convex spaces revisited

Given a class P of Banach spaces, a locally convex space E is called multi-P (see [32]) if E
can be isomorphically embedded into a product of spaces that belong to P .

For every compact space K its free lcs L(K ) ismulti-reflexive, as it was proved in a recent
paper by Leiderman and Uspenskij [32]. Since multi-reflexive lcs is DLP (by Theorem 4.6),
we obtain that L(K ) is DLP. In Theorem 8.4, we give a stronger result using the following
two facts.

Fact 8.1 [10, Proposition 2.7] For a subset A of L(X), the following assertions are equiva-
lent:

(1) A is bounded;
(2) Supp(A)has compact closure in theDieudonné completionμX andCA :=supχ∈A∪{0}‖χ‖

is finite;
(3) Supp(A) is functionally bounded in X and CA is finite.

Fact 8.2 [54, Thm. 2] If K ⊆ X is a compact subset of a Tychonoff space X, then L(K )

naturally can be viewed as a subspace of L(X).

Proof It is easy to see that K is C-imbedded into X , that is, every continuous function on K
can be extended to X (a proof can be found in Proposition 5.9). Moreover, K is compact and
therefore, by [54, Thm. 2], the inclusion L(K ) ⊆ L(X) is an embedding. ��
Lemma 8.3 The free lcs L(X) is DLP (in particular, is (NP)) for every Dieudonné complete
space X.

Proof Let B ⊆ L(X) be bounded and let M ⊆ C(X) = L(X)∗ be a weak-star compact,
equicontinuous subset. We will show that B has the DLP over M .

Since X is Dieudonné complete and by Fact 8.1, Supp(B) ⊆ X has compact closure. Let

K := Supp(B) ⊆ X .

By Fact 8.2, the inclusion L(K ) ⊆ L(X) is an embedding. Thus, B ⊆ L(K ) ⊆ L(X).
Moreover,M can be viewed as an equicontinuous subset of L(K )∗. We alreadymentioned

that L(K ) is multi-reflexive by [32]. Then L(K ) is DLP because the class is closed under
products and subspaces (see Theorem 4.3). Therefore B is DLP on M . This is true for every
bounded B and weak-star compact, equicontinuous M ⊆ L(X)∗. By definition, L(X) is
DLP. ��
Theorem 8.4 L(X) is DLP for every Tychonoff space X.

Proof Write μX for the Dieudonné completion of X . From the first sentence of the proof of
[54, Thm. 5], we know that L(X) is embedded in L(μX). By Lemma 8.3, L(μX) is DLP.
Now, by Theorem 4.3, so is L(X) as its subspace. ��
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Remark 8.5 We are indebted to S. Gabriyelyan for suggesting Theorem 8.4 and its present
proof as a consequence of Lemma 8.3.

Remark 8.6

(1) By Theorem 8.4, L(P) is DLP (in particular, is NP) for the Polish space P = N
N of all

irrationals. In contrast, another result from [32] shows that L(P) is not multi-reflexive.
(2) Note that every lcs X is a linear topological quotient of some lcs which is DLP. Indeed, the

identitymap id : X → X can be canonically extended to the linear ontomap L(X) → X ,
which is a quotient (open)map (because its restriction id : X → X is an onto factormap).

Question 8.7 Examine if L(NN) is multi-Asplund or, at least, multi-Rosenthal.

In [54, p. 679, Corollary], Uspenski shows that for a Dieudonné complete space, L(X) is
complete if and only if there are no infinite compact subsets. The following is a similar result
that shows the “scarcity" of semi-reflexivity in the realm of free locally convex spaces.

Theorem 8.8 Let X be a Dieudonné complete space. Then L(X) is semi-reflexive if and only
if X has no infinite compact subset.

Proof By Fact 4.5, semi-reflexivity is equivalent to the Heine–Borel property for the weak
topology.

First, suppose that X has no infinite compact subset. We will show that every bounded
subset is weakly relatively compact. Let B ⊆ L(X) be bounded. By Fact 8.1, B has compact
support K ⊆ X . Since every compact subset of X is finite, we conclude that Supp(B) ⊆ K is
also finite. As a consequence, B ⊆ Span(Supp(B)) is a bounded subset in a finite dimensional
topological space. In this case, the weak topology of Span(Supp(B)) coincides with the
original topology, and the Heine–Borel property is satisfied.

Conversely, assume that L(X) is semi-reflexive. By contradiction, assume that X has an
infinite compact subset K ⊆ X . Since K is infinite, we can find a discrete countable subset
{xn}n∈N ⊆ K . For every n ∈ N define:

χn :=
n∑

m=1
xm,

and consider the set B := {χn}n∈N. Clearly, B is bounded in virtue of Fact 8.1. By our
assumption, B is weakly relatively compact, and therefore has an accumulation point χ ∈
L(X).

Write χ = ∑k
i=1 αi yi and choose some n0 ∈ N such that xn0 
= yi for every 1 ≤ i ≤ k.

By the choice of {xn}n∈N, there is some neighborhood xn0 ∈ U ⊆ X such that

A := {xn}n0 
=n∈N ∪ {yi }ki=1 ⊆ X \U .

Since X is completely regular, we can find f ∈ C(X) = (L(X))∗ such that

f (xn0) = 1 and ∀x ∈ A : f (x) = 0.

By the definition of accumulation point, there is some n0 ≤ N ∈ N such that

‖ f (χ)− f (χN )‖ <
1

2
.

However, f (χ) = 0 and f (χN ) = 1, which is a contradiction. ��
Wewere informed recently by Gabriyelyan that Proposition 8.8 is a partial case of a more

general result which was proved in his (accepted) joint work with Banakh [2].
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9 DFJP factorization for lcs

Recall that a continuous linear operator T : E → F between two lcs is said to be (weakly)
compact if there exists a neighborhood O of zero in E such that T (O) is relatively (weakly)
compact in F , [21, p. 94]. A natural possibility to generalize these definitions is to require that
T (O) is small in some other sense, i.e., T (O) belongs to some bornology of small subsets.
In particular, we have the following definitions.

Definition 9.1 We say that a linear continuous map T : E → F between lcs is tame (NP,
DLP) if there exists a zero neighborhood U ⊆ E such that T (U ) ⊆ F is a tame (NP, DLP)
subset in F .

Note that by our definitions T (U ) is bounded. Hence, the identitymap of a tame not normable
lcs is not tame.

The following fundamental result is a part of a classical work about DFJP factorization,
[6]. In [15, 17, 36, 39], some simplifications and adaptations were added.

Fact 9.2 [6, Lemma 1] Let X be a Banach space and W ⊆ X be an absolutely convex
bounded subset. Write Un := 2nW + 2−n BX and ‖·‖n for the gauge of Un. Also, consider
[x] := (

∑
n∈N‖x‖2n)1/2 and Y = {x ∈ X | [x] < ∞}. Finally, let j : Y → X be the identity

map. Then:

(1) W ⊆ BY .
(2) (Y , [·]) is a Banach space and j is continuous.
(3) j∗∗ : Y ∗∗ → X∗∗ is one to one and ( j∗∗)−1(X) = Y .
(4) Y is reflexive if and only if W is weakly relatively compact.

Remark 9.3 Note that in Fact 9.2, j∗ : X∗ → Y ∗ is dense as a consequence of Lemma 9.4.

Lemma 9.4 Let f : E1 → E2 be a continuous linear map between locally convex spaces.
Then f ∗ : E∗2 → E∗1 is one to one if and only if f : E1 → E2 has a dense image.

Proof Observe that f (E1) is not dense in E2 if and only if there exists 0 
= ϕ ∈ E∗2 such
that f ∗(ϕ) = 0. ��
Lemma 9.5 Let K be a compact topological space and let {An}n∈N be a sequence of sets of
bounded functions on K . Write B for the unit ball of C(K ) and:

A :=
⋂
n∈N

(
An + 1

2n
B

)
.

If all {An}n∈N are (eventually) fragmented over K , so is A.

Proof We will only prove the case of eventually fragmented maps. The other case is slightly
easier. Suppose that {xm}m∈N ⊆ A is an infinite subset. We need to find a subsequence
{mk} ⊆ N such that {xmk }k∈N is fragmented over K . By its definition, for every n,m ∈ N, we
can find y(n,m) ∈ An such that xm ∈ y(n,m)+ 1

2n Bn (we use function notation rather than

subscript to make it easier to read). Using induction, we build a sequence
{{

m(n)
k

}
k∈N

}
n∈N

of

descending infinite subsequences.Wedefinem(−1)
k := k (the trivial subsequence), and at each

step choose a subsequence
{
m(n+1)

k

}
k∈N ⊆

{
m(n)

k

}
k∈N such that

{
y
(
n + 1,m(n+1)

k

)}
k∈N
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is fragmented. Now, define mk := m(k)
k . It is easy to see that Yn := {y (n,mk)}k∈N remains

fragmented. We will show that so does A′ := {xmk }k∈N ⊆ A.
Let ε > 0 and T ⊆ K be non-empty. We need to find an open O ⊆ K such that T ∩ O

is not empty and f (T ∩ O) is ε-small for every f ∈ A′. There exists some n0 ∈ N such
that 1

2n0 < 1
3ε. By our construction, {y (n0,mk)}k∈N is fragmented so we can find an open

O ⊆ K such that O ∩ T is not empty and f (O ∩ T ) is 1
3ε-small for every f ∈ Yn . Since

A′ ⊆ Yn + 1
2n0 B, it is easy to see that for every f ∈ A′, f (O ∩ T ) is ε-small, as required. ��

Fact 9.6 [39] Let j : V1 → V2 be a continuous linear operator between Banach spaces such
that the adjoint j∗ : V ∗2 → V ∗1 is norm-dense. Let F ⊂ V1 be a bounded subset.

(1) If j(F) is a tame subset in V2, then F is a tame subset in V1.
(2) If j(F) is an Asplund subset in V2, then F is an Asplund subset in V1.

Proof (1) In order to show that F is a tame subset in V1 it is equivalent to check that F
is eventually fragmented on BV ∗1 (Lemma 2.24). We have to prove that for every sequence
{ fn}n∈N in F there exists a subsequence { fnk }k∈N which is fragmented on BV ∗1 . Equivalently,
(BV ∗1 ,ρC ) is separable (Lemma 2.17), where

C:={ fnk } and ρC(x1,x2):=sup f∈C | f (x1)− f (x2)|.
By our assumption, j(F) is a tame subset in V2. Hence, there exists a subsequence

C := { fnk } of { fn} such that j(C) = { j( fnk )} is a fragmented family on BV ∗2 . Equivalently,
(BV ∗2 , ρ j(C)) is separable (Lemma 2.17). Then (V ∗2 , ρ j(C)) is also separable. By the defini-
tion of the adjoint operator, we have 〈 j(x), v∗〉 = 〈x, j∗(v∗)〉 for every x ∈ V1, v∗ ∈ V ∗2 .
This implies that ( j∗(V ∗2 ), ρC ) is separable. Then its ρC -closure clρC ( j∗(V ∗2 )) is also ρC -
separable. Clearly, clρC ( j∗(V ∗2 )) ⊃ clnorm( j∗(V ∗2 )) = V ∗1 (becauseC is a bounded sequence
in V1). Therefore, (V1,∗ , ρC ) and also (BV ∗1 , ρC ) are separable, as desired.

(2) The case of Asplund subsets is similar (and easier). ��

Lemma 9.7 Let A beabounded tame (Asplund, relativelyweakly compact) subset in aBanach
space X. Then there exist a Rosenthal (Asplund, reflexive) Banach space Y , a continuous
linear injective map j : Y → X such that A is a subset of j(BY ) and the adjoint map
j∗ : X∗ → Y ∗ is dense.

Proof DefineW := acx A. The case of relativelyweakly compact subsets is a consequence of
Fact 9.2. Let us consider the cases where A is tame or Asplund. By Lemma 3.5, W remains
tame (Asplund). Next, let j : Y → X and {Un}n∈N be as described in Fact 9.2. It is well
known and easy to see that

A ⊆ W ⊆ j(BY ) = BY ⊆ U :=
⋂
n∈N

Un .

Then j∗ : X∗ → Y ∗ is dense byRemark 9.3. By Lemma 2.24, the tameness (Asplundness)
of bounded families of continuous functions on compact sets is equivalent to eventual frag-
mentability (fragmentability). By Lemma 9.5, we conclude that U and j(BY ) also are tame
(Asplund) subsets. By Fact 9.6, BY is tame (Asplund). Therefore, Y is Rosenthal (Asplund).

��

Theorem 9.8 Every tame (NP, DLP) operator T : E → X between a lcs E and a Banach
space X can be factored through a Rosenthal (Asplund, reflexive) Banach space.
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Proof By our assumption, there exists a zero neighborhood O in E such that T (O) is tame
(Asplund, weakly relatively compact) in X .We apply Lemma 9.7 to the subset A:=T (O)⊂ X
in order to construct a Rosenthal (Asplund, reflexive) Banach space V and a continuous
injective linear operator j : V → X such that A is a subset of j(BV ). Now, consider the
linear operator u := j−1 ◦ T : E → V . Since u(O) ⊂ BV , we obtain that u is continuous.
Then T = j ◦ u is the required factorization. ��

It would be interesting to find some additional natural bornologies which are consistent
with DFJP-factorization.

10 Generalization of Haydon’s Theorem and tame spaces

In its original statementHaydon’s theorem characterizes Rosenthal Banach spaces as follows.

Theorem 10.1 (Haydon [23, Thm. 3.3]) Let V be a Banach space. The following are equiv-
alent:

(1) V contains no l1-sequence;
(2) every weak-star compact convex subset of V ∗ is the norm closed convex hull of its extreme

points;
(3) for every weak-star compact subset T of V ∗,

cow∗(T ) = co (T ).

Our generalized version, in a brief summary, can be expressed as follows.

Proposition 10.2 For a locally convex space E, the following are equivalent:

(1) E is tame (in virtue of Theorem 7.1, equivalent to not containing of an l1-sequence);
(2) every equicontinuous, weak-star compact convex subset of E∗ is the strong closed con-

vex hull of its extreme points. That is, cow∗(ext M) = co (ext M) for every convex
M ∈ eqc (E∗);

(3) for every equicontinuous, weak-star compact subset T of E∗,

cow∗(T ) = co (T ).

In fact, Theorem 10.12 will show an even more localized result for a given equicontinuous
subset M .

Application of the DFJP construction. By the Krein–Milman theorem, if M ∈ eqc (E∗)
is convex, then M = cow∗(ext M). In light of Haydon’s theorem, we give the following
definition.

Definition 10.3 Let M ∈ eqc (E∗) be convex. We say that a bounded set B ⊂ E is anti-H
for M if there exist a functional ψ ∈ M and ε > 0 such that

U [B, ε](ψ) ∩ co (ext M) = ∅.
The following is a direct consequence of the previous definition.

Lemma 10.4 cow∗(ext M) = co (ext M) if and only if there is no bounded B ⊆ E which is
anti-H for M.

Lemma 10.5 Let T : E1 → E2 be a continuous linear map between lcs, T ∗ : E∗2 → E∗1 be
its adjoint, B be a bounded subset in E1 and M ∈ eqc (E∗2 ) be convex. Then
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(1) (ϕ1, ϕ2) ∈ U [T (B), ε] in E∗2 ⇐⇒ (T ∗(ϕ1), T ∗(ϕ2)) ∈ U [B, ε] in E∗1 ;
(2) for every ϕ ∈ E2 we have

U [T (B), ε](ϕ) = (T ∗)−1(U [B, ε](T ∗(ϕ)));
(3) if T (B) is anti-H over M then B is anti-H over T ∗(M);
(4) if the image of T is dense in E2, then the converse is also true, namely, B being anti-H

over T ∗(M) implies that T (B) is anti-H over M.

Proof

(1) By definition of the adjoint T ∗ : E∗2 → E∗1 , we have

〈b, T ∗(ϕ)〉 = 〈T (b), ϕ〉 ∀b ∈ B.

Now apply the descriptions of U [B, ε],U [T (B), ε] according to Definition 2.5.
(2) Using (1) we get:

ϕ′ ∈ U [T (B), ε](ϕ) ⇐⇒ (ϕ, ϕ′) ∈ U [T (B), ε]
⇐⇒ (T ∗(ϕ), T ∗(ϕ′)) ∈ U [B, ε]
⇐⇒ T ∗(ϕ′) ∈ U [B, ε](T ∗(ϕ))

⇐⇒ ϕ′ ∈ (T ∗)−1(U [B, ε](T ∗(ϕ))).

(3) By definition, there exists ϕ ∈ M such that:

U [T (B), ε](ϕ) ∩ co (ext M) = ∅.
Write ψ := T ∗(ϕ). Suppose by contradiction that B is not anti-H for T ∗(M). Thus, we
can find

ψ ′ ∈ U [B, ε](ψ) ∩ co (ext T ∗(M)).

By Lemma 2.32.1, co (ext T ∗(M)) ⊆ T ∗(co (ext M)). We can therefore find
ϕ′ ∈ co (ext M) such that ψ ′ = T ∗(ϕ′). Also, by (2):

ψ ′ = T ∗(ϕ′) ∈ U [B, ε](T ∗(ϕ)) ⇒ ϕ′ ∈ (T ∗)−1(U [B, ε](T ∗(ϕ))) = U [T (B), ε](ϕ).

Using all the information on ϕ′ so far, we get

ϕ′ ∈ U [T (B), ε](ϕ) ∩ co (ext M) = ∅,
a contradiction.

(4) Since T has a dense image, T ∗ is injective and so Lemma 2.32.2 is applicable:

B is anti-H for T ∗(M) ⇐⇒ ∃ ϕ ∈ M : U [B, ε](T ∗(ϕ)) ∩ co (ext T ∗(M)) = ∅
	⇒
(2)

∃ ϕ ∈ M : T ∗(U [T (B), ε](ϕ)) ∩ co (ext T ∗(M)) = ∅
⇐⇒
2.32.2

∃ ϕ ∈ M : T ∗(U [T (B), ε](ϕ)) ∩ T ∗(co (ext M)) = ∅
⇐⇒

�
∃ ϕ ∈ M : U [T (B), ε](ϕ) ∩ co (ext M) = ∅

⇐⇒ T (B) is anti-H for M .

Note that the equivalence marked by � is true in virtue of another application of T ∗ being
injective.

��
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Proposition 10.6 Let V be a Banach space, A ⊆ V be bounded and M ∈ eqc (V ∗) be convex.
If A is anti-H with respect to M, then A is not tame in V .

Proof By contradiction, assume that A is tame in V . LetW and j : W → V be the Rosenthal
Banach space and the map described in the factorization Lemma 9.7 (caution: the notation
was V and notW in Lemma 9.7). Thus, A ⊆ j(BW ) and therefore j(BW ) is also anti-H over
M . By Lemma 10.5.3, BW is anti-H over j∗(M). However, j∗(M) is a weak-star compact
subset of a Rosenthal Banach space - a contradiction to Haydon’s Theorem 10.1. ��

Proposition 10.7 Let E be a lcs.
If M ∈ eqc (E∗) is co-tame and convex, then M = co (ext M).

Proof Clearly, M ⊇ co (ext M). To show the converse, assume by contradiction that M �

co (ext M). By Lemma 10.4, we can find a bounded B ⊆ E which is anti-H for M . Let
V , π : E → V and � : SpanM → V ∗ be the maps described in Lemma 2.35. Write
N := �(M) ∈ eqc (V ∗). Since � is weak-star continuous, N is weak-star compact in V ∗
and therefore equicontinuous by the Banach–Steinhaus theorem (V is a Banach space). Note
that M = π∗(N ) so we can say that B is anti-H over π∗(N ). The map π is dense, so by
Lemma 10.5.4 we conclude that π(B) is anti-H over N .

However, M is co-tame so B is tame over M = π∗(N ) by definition. By Lemma 3.6,
π(B) is tame over N . Moreover, by Lemma 7.12, π(B) is tame over

acx w∗N = acx w∗�(M) = BV ∗ .

Thus, π(B) is tame in V . Proposition 10.6 gives the contradiction. ��

The Haydon Property and other results.

Definition 10.8 Let E be a locally convex space and let M ∈ eqc (E∗). We say that M has
the Haydon property if

cow∗(N ) = co (N )

for every weak-star closed N ⊆ M . If every M ∈ eqc (E∗) has the Haydon property, then
we say that so does E .

Lemma 10.9 Let F ≤ E be a dense large subspace of E. If F has the Haydon property, then
so does E.

Proof Suppose that F has theHaydon property, and letM ∈ eqc (E∗). Consider the inclusion
map i : F ↪→ E and its adjoint i∗ : E∗ → F∗, the restriction map. By Lemma 2.7, i∗ is a
strong isomorphism. Moreover, i∗ is weak-star continuous (Fact 2.6). Since M is weak-star
compact, i∗ is a closed map on M . Therefore:

i∗(cow∗(M)) = cow∗(i∗(M)) = co(i∗(M)) = i∗(co(M)).

Since i∗ is a bijection (and therefore injective), we conclude that cow∗(M) = co(M). Note
that we used the fact that F has the Haydon property. ��

Lemma 10.10 Let E be a locally convex space and let M ⊆ E∗ be a disked, equicontinuous,
weak-star compact subset. If M satisfies Haydon’s property, then it also satisfies (R∗1).
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Proof By contradiction, suppose that M does not satisfy (R∗1). By Lemma 6.8, there exist
an embedding T : V → E where V is a dense normed subspace of l1 and δ > 0 such that
δBV ∗ ⊆ T ∗(M). Recall that l1 does not satisfy the Haydon property. By virtue of Lemma
10.9, neither does V . By definition, there exists N ′ ∈ eqc (BV ∗) such that:

cow∗(N ′) � co (N ′).

Without loss of generality, we may assume that N ′ ⊆ δBV ∗ . We know that T ∗(M) ⊇ δBV ∗
and therefore

T ∗(M) ⊇ δBV ∗ ⊇ N ′.

Define N := M ∩ (
(T ∗)−1(N ′)

) ⊆ M . Then T ∗(N ) = T ∗(M) ∩ N ′ = N ′. The adjoint T ∗
is strongly continuous and therefore:

T ∗(co N ) ⊆ co (T ∗(N )).

Since T ∗ is also weak-star continuous (Fact 2.6), N is a closed subspace of M , and therefore
equicontinuous and weak-star compact. Since T ∗ is a closed map over weak-star compact
M , we get

T ∗(co N ) ⊆ co (T ∗(N )) = co (N ′) � cow∗(N ′) = cow∗(T ∗(N )) = T ∗(cow∗N ).

In particular, T ∗(co N ) � T ∗(cow∗N ), and therefore co N � cow∗N . By definition, M does
not satisfy Haydon’s property. This contradiction completes the proof. ��

The following is a locally convex analogue of the equivalence (1)⇔ (2) in Lemma 2.27.

Proposition 10.11 Let E be a lcs.

• E is tame if and only if every x∗∗ ∈ E∗∗ is weak-star fragmented over every
M ∈ eqc (E∗).

• a weak-star compact, equicontinuous M ∈ eqc (E∗) is co-tame if and only if every
x∗∗ ∈ E∗∗ is weak-star fragmented on M;

• a bounded B ⊆ E is tame on M if and only if every x∗∗ ∈ B
w∗

is weak-star fragmented
on M (the closure here is taken with respect to the weak-star topology of E ⊆ E∗∗).

Proof First note that the second assertion follows from the third since every x∗∗ ∈ E∗∗ is
contained in the weak-star closure of some bounded B ⊆ E ( [52, Thm. 5.4 p. 143]).

The rest of the proposition is a consequence of Lemma 2.24. ��
Theorem 10.12 (Generalized Haydon Theorem) For a locally convex space E, the following
are equivalent:

(i) E is tame.
(ii) E satisfies (R1).
(iii) Every weak-star compact, equicontinuous convex subset of E∗ is the strong closed

convex hull of its extreme points.
(iv) For every weak-star compact, equicontinuous subset T of E∗, we have:

cow∗(T ) = co (T ).

(Local version) Specifically, if M ∈ eqc (E∗), then the following are equivalent:

(1) M is co-tame.
(2) M satisfies (R∗1).
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(3) For every weak-star closed, convex N ⊆ acx w∗(M) we have:

N = co (ext N ).

(4) acx w∗(M) has the Haydon property.
Explicitly, for every weak-star closed N ⊆ acx w∗(M), we have:

cow∗(N ) = co (N ).

(5) Every x∗∗ ∈ E∗∗ is a fragmented map over M.

Proof

(2) ⇒ (1) By definition, there is no l1-sequence with respect to ρM . Suppose that B ⊆ E is
bounded, and let r : E → C(M) be the restriction map. As a consequence, r(B)

contains no l1 sequences in C(M).
By Lemma 2.24, r(B) is tame on M . This is true for every bounded B ⊆ E so
M is indeed co-tame.

(1) ⇒ (3) Proposition 10.7 and Lemma 7.12.
(3) ⇒ (4) Suppose that N ⊆ acx w∗(M) is a weak-star closed subset. As a consequence,

it is also weak-star compact. Write N ′ := cow∗(N ). By [42, Lemma 9.4.5], the
extreme points of the closed convex hull of a set lies in the closure of the original
set. Thus:

ext N ′ ⊆ N
w∗ = N .

Note that N ′ is a closed convex subset of acx w∗(M) and therefore we can apply
(3):

N ′ = co (ext N ′) ⊆ co (N ) ⊆ cow∗(N ) = N ′.

In particular, for every closed N ⊆ acx w∗(M),

co (N ) = cow∗(N ),

as required.
(4) ⇒ (2) By Lemma 10.10, acx w∗(M) satisfies (R∗1). It is easy to see that so does

N ⊆ acx w∗(M).
(1) ⇔ (5) Proposition 10.11.

��
Second part of Theorem 10.12 (for Banach spaces, in particular) gives a local version

of Haydon’s theorem involving co-tameness. There are some other localization results for
Banach spaces. Among others: [20, Proposition 3.8], [47, Thm. 9 and 11], [50, Thm. 1] and
[46, Theorem. 4].

11 Representations of group actions

Representations of dynamical systems on lcs.We apply properties of tame locally convex
spaces to the theory of representations of dynamical systems. Let G be a topological group
and G × X → X be a continuous action of G on a topological space X . Then we say that X
is a G-space. If, in addition, X is compact, then we say that X is a dynamical G-system. By
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the approach of A. Köhler [30], a dynamical G-system X is said to be tame (regular, in the
original terms of Köhler) if the orbit f G = { f g : g ∈ G}, as a family of functions on X , is
tame. Or, equivalently, if f G is a tame subset in the Banach space C(X).

Theorems 11.4 and 11.5 establish the close relation between tame dynamical systems and
representations on tame locally convex spaces. A compact G-system X is representable on
a tame lcs iff (G, X) is tame as a dynamical system. Similarly, by Theorem 11.6, a compact
G-system X is representable on an NP (reflexive) lcs E iff X is hereditarily nonsensitive
(weakly almost periodic). Such results are well-known (see [14, 15, 34]) formetrizable tame
(hereditarily nonsensitive, weakly almost periodic) G-systems with Rosenthal (Asplund,
reflexive) Banach spaces V .

Recall that a (proper) representation of a G-space X on a Banach space (V , || · ||) is a pair
(h, α), where h : G → Iso (V ) is a strongly continuous co-homomorphism and α : X → V ∗
is a weak-star continuous bounded G-mapping (resp. embedding) with respect to the dual
action

G × V ∗ → V ∗, (gϕ)(v) := ϕ(h(g)(v)) = 〈vg, ϕ〉 = 〈v, gϕ〉.
Fact 11.1 Let X be a compact metrizable G-space. X admits a proper representation on

(1) [34] a reflexive Banach space iff X is a WAP dynamical G-system;
(2) [14] an Asplund Banach space iff X is a HNS dynamical G-system;
(3) [15] a Rosenthal Banach space iff X is a tame dynamical G-system.

Many details about these results, as well as the definitions of HNS (hereditarily nonsen-
sitive) and WAP (weakly almost periodic) dynamical systems, can be found in [18].

These results, in the framework of a unified approach representing “small subsets", appear
in [36, 39].

In this section, we extend Fact 11.1 to nonmetrizable dynamical systems and suitable
locally convex spaces. More definitions and remarks are in order. For every lcs E denote by
GL(E) the group of all continuous linear automorphisms of V .

(1) The right action of G (induced by h : G → Iso (V )) on (V , || · ||) and the corresponding
dual action on the dual Banach space V ∗ are equicontinuous. Moreover, one may attempt
to give a slightly more general definition. Namely, defining h : G → GL(V ) as a co-
homomorphism which is equicontinuous. Then one may modify the norm getting again
the “isometric version" but under the new norm. Namely, define

||v||new := sup{||vg|| : g ∈ G}.
Since the action is (uniformly) equicontinuous, this norm generates the same topology.

(2) If X is compact then α(X) is weak-star compact in V ∗. Since V is a Banach space then
α(X) is automatically bounded and equicontinuous.

Definition 11.2 By a (proper) representation of aG-space X on a lcs E wemean a pair (h, α),
where h : G → GL(E) is a strongly continuous co-homomorphism, h(G) is equicontinuous
and α : X → V ∗ is a weak-star continuous G-mapping (resp. embedding) with respect to
the dual action

G × E∗ → E∗, (gϕ)(v) := ϕ(h(g)(v)) = 〈vg, ϕ〉 = 〈v, gϕ〉
such that α(X) is equicontinuous.
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Remarks 11.3

(1) The right action E × G → E is continuous. It is equivalent to strong continuity of h
(because the action is equicontinuous).

(2) It is well-known that the dual action G× E∗ → E∗, in general, is not continuous (where
E∗ carries its standard strong dual topology), even for Banach spaces and linear isometric
actions. A sufficient condition is that E is an Asplund Banach space (see [33]). The same
is not true for Rosenthal Banach spaces.

(3) If E is barreled and X is compact, we can omit the condition that α(X) is equicontinuous.
(4) It is easy to see that if X ∈ eqc (E∗) is G-invariant, then the induced action G× X → X

is continuous. For Banach spaces E it is well-known; see, for example, the proof in [35]
(for the isometric representation).

Theorem 11.4 Every compact tame dynamical G-system admits a proper representation on
a tame lcs.

Proof Let X be a compact tame dynamical G-system. As we already know by [15], X is
Rosenthal-approximable. That is, there exists a G-embedding of X into aG-product

∏
i∈I Xi

of Rosenthal-representable G-systems Xi . Let (hi , αi ) be a proper representation of (G, Xi )

on a Rosenthal Banach space Vi . Then the lcs direct sum V := ⊕i∈I Vi is a tame lcs according
to Theorem 5.5.4.

Indeed, first of all note that algebraically the dual V ∗ is the product
∏

i∈I V ∗i with the
corresponding duality

V × V ∗ → R, (v, u) �→
∑
i∈I
〈vi , ui 〉.

Furthermore, the compact space
∏

i∈I Xi naturally is embedded into V ∗ with the weak-star
topology. One of the main steps here is to show that

∏
i∈I Xi is an equicontinuous subset of

V ∗. This follows by Remark 3.11.2.
We have a naturally defined coordinate-wise linear action ofG on V = ⊕i∈I Vi . Using the

abovementioned description of the topology onV = ⊕i∈I Vi , it is easy to show that this action
is equicontinuous. So, we have an equicontinuous strongly continuous co-homomorphism
h : G → GL(V ). Finally, observe that the embedding α : ∏

i∈I Xi ↪→ V ∗ is weak-star
continuous and equivariant. ��

Note that if in Theorem 11.4 the compact G-space X in addition is metrizable, then we
can suppose that V is a Banach space. However, it is not true if X is not metrizable (even for
trivial G-actions).

Theorem 11.5 Every compact G-space X which admits a proper representation on a tame
lcs is tame as a dynamical system.

Proof Let (h, α) be a proper representation of the G-system X on a tame lcs E , where
h : G → GL(E) is a strongly continuous co-homomorphism, h(G) is equicontinuous and
α : X → V ∗ is a weak-star continuous G-embedding with respect to the dual action
E∗ × G → E∗, such that α(X) is equicontinuous. For every v ∈ V , we have the induced
continuous function

fv : X → R, x �→ 〈v, α(x)〉.
Then the orbit vG is bounded because h(G) is an equicontinuous subset ofGL(E). Since E is
a tame lcs, its bounded subsets are tame. Hence, vG is a tame family for every equicontinuous
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compact subset in the dual. In particular, it is true for α(X). This implies that the orbit fvG
of fv is a tame family on X . Therefore, fv is a tame function on X (in the sense of [15]).
Since V separates the points of α(X), we obtain that Tame(X) separates points of X . This
means that the G-system X is tame in the sense of [15]. ��

Similarly, making use of Remark 3.11, the following theorem can be proved.

Theorem 11.6 A compact dynamical G-system X is representable on

(1) E ∈ (NP) if and only if (G, X) is hereditarily nonsensitive;
(2) E ∈ (DLP) if and only if (G, X) is weakly almost periodic.

Note that, like (T), the classes (NP), (DLP) and reflexive lcs also are closed under lc
direct sums. So, we can assume in (2) that E is a reflexive lcs. For brevity, we omit the details.
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